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Abstract

In the present thesis a self-consistent theory is constructed, interpreting the observations of indi-

vidual pulsars. The distribution function of relativistic electrons is one-dimensinal and anisotropic

at the pulsar surface and plasma becomes unstable, which can lead to wave excitation in the outer

part of the pulsar magnetosphere. Generation of waves is possible if the condition of cyclotron

resonance is fulfilled. During this process one also has a simultaneous feedback of excited waves

on the resonant electrons. This mechanism is described by quasi-linear diffusion (QLD), leading to

the diffusion of particles along and across the magnetic field lines. Consequently, resonant particles

acquire perpendicular momenta and start to radiate in the synchrotron regime. On the basis of

the Vlasov’s kinetic equation we formulate the equations controlling such processes, and obtain the

solution for this equations.

The measured X-ray spectra of RX J1856.5-3754 and RX J2143.0+0654 are explained under

the assumption of a synchrotron mechanism. These objects are the nearby isolated neutron stars,

and considerable observational resources have been devoted to them. However, current models are

unable to satisfactorily explain the data. We show that our latest model, which is based on well-

developed theory of pulsars represents the most self-consistent picture to date for explaining all

the observations. We confirm that the cyclotron instability is quite efficient, since the estimations

show that the time of wave-particle interaction is long enough for particles to acquire perpendicular

momenta and generate observed radiation.

The present model provides simultaneous generation of low and high energy emission in one

location of the pulsar magnetosphere. Relying on this fact, we suppose that generation of phase-

aligned signals from different frequency bands of the Crab pulsar can be explained in the framework

of the model. Particularly, here we investigate the recently detected high energy (HE) emission

(∼ 25GeV) of the Crab pulsar and explain its coincidence with the radio pulses. A different

approach of the synchrotron theory is considered, giving the spectral index of the HE emission

(β = 2) and the exponential cutoff energy (23GeV) in a good agreement with the observational

data.



Nomenclature

CDI Curvature drift instability

GJ Goldreich-Julian

HE High energy

ICS Inverse Compton scattering

NS Neutron star

PA Position angle

QLD Quasi-linear diffusion

XDINS X-ray dim isolated neutron stars
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Chapter 1

Introduction

The discovery of pulsars in 1967 by Hewish et al. (1968) was one of the

most exciting events in the history of astronomy. Soon after their discovery

pulsars were identified with rotating highly magnetized neutron stars, which

emit beamed electromagnetic radiation that is powered by the rotational en-

ergy of the star (Gold, 1969). Due to the rotation of the pulsar, the emission

appears to be pulsed for a distant observer. The extreme conditions existing

in pulsars and their magnetosphere raised high interest of scientists. The

surface magnetic fields are reaching B ∼ 1012 − 1013G, and the mass density

inside the star is comparable to the nuclear density ∼ 1014−1015g cm−3. Pul-

sar astronomers have now detected over 2000 pulsars and expect to discover

thousands more during the next few years.

At present there are about 12 competing theories which differ both in

the physical effects responsible for the pulsar emission and in the location

where the radiation is generated. To date, the most widely discussed theory

attributes the emission to coherent curvature emission by bunches of particles.

Although this theory can explain a broad range of observed pulsar properties

by the careful arrangement of the magnetic field geometry and the form

and size of bunches, 30 years of theoretical efforts have failed to explain the

origin of these bunches (Melrose, 1995). This theory can also be ruled out

on observational grounds (Lesch et al., 1998). In addition to the work of

Lesch et al. (1998) we note that this theory also fails to explain the observed

correlations of the conal peaks (Kazbegi et al., 1991b) and the large size of

the emitting region (Gwinn et al., 1997).
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We propose that the pulsar emission is generated by plasma instabilities

developing in the outflowing plasma on the open field lines of the pulsar mag-

netosphere. Plasma can be considered as an active medium that can amplify

its normal modes. The wave amplification can be the result of the resonant

wave-particle interaction, i.e. in the rest frame of the particle the frequency

of the resonant wave is zero or a multiple of the gyrational frequency. The

plasma instabilities that we argue operate in the pulsar magnetosphere may

be described by the (somewhat contradictory) term incoherent broad-band

maser. Each single emission by a charged particle is a result of the stim-

ulated, as opposed to spontaneous, emission process. Unlike conventional

lasers in which basically one single frequency gets amplified, in this case

charged particles can resonate with many mutually incoherent waves with

different frequencies.

To explain the observed pulsar properties, we rely on the pulsar emission

model first developed by Machabeli & Usov (1979) and Lominadze et al.

(1983). It is well known that the distribution function of relativistic particles

is one dimensional at the pulsar surface, because any transverse momenta

(p⊥) of relativistic electrons are lost in a very short time(≤ 10−20s) via syn-

chrotron emission in very strong B ∼ 1012G magnetic fields. This means

that one needs a certain mechanism, leading to the creation of the pith an-

gles restoring the synchrotron radiation. The main mechanism of wave gen-

eration in plasmas of the pulsar magnetosphere is the cyclotron instability

(Kazbegi et al., 1992). During the quasi-linear stage of the instability, a dif-

fusion of particles arises along and across the magnetic field lines. Therefore,

the resonant electrons acquire transverse momenta and, as a result start to

radiate in the synchrotron regime. The original waves generated by the cy-

clotron resonance are vacuum-like electromagnetic waves, so they may leave

the magnetosphere directly and reach an observer. These waves mainly come

in the radio or optical domain and might be detected with higher frequency

emission that is generated in the same area of the pulsar magnetoshpere by

synchrotron mechanism.

In a number of papers (Chkheidze & Machabeli, 2007; Chkheidze et al.,
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2010; Chkheidze, 2011), we attempted to describe the emission spectra of in-

dividual pulsars under the assumption of a synchrotron mechanism, switched

on the light cylinder length-scales (a hypothetical zone, where the linear ve-

locity of rigid rotation exactly equals the speed of light), due to the QLD

developed by means of the cyclotron instability. Particularly, in the frame-

work of our emission model we investigated the observed properties of two

members (RX J1856.5-3754 and RX J2143.0+0654) of the peculiar class of

pulsars, the so called ’XDINS’ - X-ray dim isolated neutron stars. We also

explained the recently observed HE emission of the Crab pulsar. Let us make

a brief overview of these objects.

1.1 XDINS

Over the last decade ROSAT observations have led to the discovery of seven

very soft X-ray sources with quite particular characteristics, commonly called

X-ray dim isolated neutron stars. They exhibit very similar properties and

despite intensive searches their number remained constant since 2001. Iden-

tification of additional sources that may still be present (Rutledge et al.,

2003) in the ROSAT Bright Sources Catalog (containing ≈ 18000 sources

with > 0.05 counts s−1 with the Position-Sensitive Proportional Counter, or

PSPC; Voges et al. (1999)) is extremely difficult given the poor positional

accuracy of the PSPC.

Although it is now widely agreed that the seven ROSAT sources are iso-

lated neutron stars, their puzzling properties make the origin of their emission

still uncertain. The overall X-ray spectrum of XDINS is well reproduced by

an absorbed blackbody with temperatures in the range kT ∼ 40 − 100 eV.

Consequently, it is mostly supposed that the emission of these sources have

a thermal nature. The discovery of the seven neutron stars (which are often

called the ’Magnificent Seven’) with purely thermal X-ray spectra raised wide

interest by theoreticians and observers as promising objects to learn about

atmospheres and the internal structure of neutron stars (e.g. Paereles et al.

(2001)). Hence, every effort is directed to making a thermal emission model
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which would well describe the observational properties of XDINS. Applica-

tion of more sophisticated, and physically motivated, models for the surface

emission (atmospheric models in particular) result in worse agreement with

the data. To explain this fact, it has been proposed1 that the star has no

atmosphere but a condensed matter surface. The mentioned surface might

result in a virtually featureless Planckian spectrum in the soft X-ray band.

Detailed multiwavelength studies of XDINS are fundamental for tracking

their evolutionary history, and for shedding light on their properties. While

the XDINS have similar spectral properties in the X-rays, in the optical the

paucity of multi-band observations prevents a clear spectral characterization.

For the XDINS with a certified counterpart (see e.g. Kaplan (2008)) the

optical emission lies typically a factor ∼ 10, or more, above the extrapolation

of the X-ray blackbody into the optical/UV band. However, while the optical

flux closely follows a Rayleigh-Jeans distribution in RX J1856.5-3754, possible

deviations from a λ−4 behaviour have been reported for RX J0720.4-3125 and

RX J1605.3+3249 ((Kaplan et al., 2003; Motch et al., 2003, 2005; Zane et

al., 2006). Thus, whether the optical emission from XDINS is produced by

regions of the star surface at a lower temperature (e.g. Pons et al. (2002))

or by other mechanisms, such as non-thermal emission from particles in the

star magnetosphere or reprocessing of the surface radiation by an optically

thin (to X-rays) hydrogen layer surrounding the star (Motch et al., 2003; Ho

et al., 2007), is still under debate.

Since the broadband spectra of this sources cannot be fitted by a single

Planckian spectrum, it is often described by two-temperature blackbody mod-

els (Pons et al., 2002; Pavlov, Zavlin & Sanwal, 2002; Burwitz et al., 2003).

However, condensation of surface matter requires very specific conditions to

be fulfilled (Lai & Salpeter, 1997; Lai, 2001). Even if these conditions are

satisfied, the formation of a non-uniform distribution of the surface temper-

ature (two-temperature blackbody models) still remains unclear. The most

adequate fits of the spectra give models which assume that the star has a thin

hydrogen atmosphere superposed on a condensed matter surface (Motch et

1Originally suggested by G. Pavlov (2000)
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al., 2003; Ho et al., 2007). But the origin of such thin hydrogen layers fitting

the data is a problematic issue.

The only reason for the consideration that the XDINS are the sources of

pure thermal radiation is that their X-ray spectra are best described by the

Planckian function. The plasma emission model presented in this work ex-

plains the measured soft X-ray spectra of XDINS as well. We suggest that

the X-ray radiation of these objects is generated by a synchrotron mecha-

nism, switched on during the quasi-linear stage of the cyclotron instability.

In particular, the X-ray spectra of RX J1856.5-3754 and RX J2143.0+0654

are as well fitted with the model spectrum, as with the Planckian one. The

reason for this is that we consider a different approach of the synchrotron

theory, which provides the synchrotron spectra that are not only power-law

but also might contain the exponential cutoff. The current model gives suc-

cessful explanation of observational data without facing problems typical of

the thermal radiation models. However, the most reliable argument reveal-

ing the real emission nature of XDINS would be the study of these objects

with future polarization instruments, such as Constellation-X, XEUS, and

the Extreme Physics Explorer (Bellazini et al., 2006; Elvis, 2006; Jahoda et

al., 2007).

1.2 Crab pulsar

The Crab Nebula is among the brightest objects of our Galaxy and it is the

remnant of a supernova explosion that occurred in AD 1054 (e.g. Collins et

al. (1999), and references therein) at a distance of ∼ 2kpc. It is one of the

best studied non-thermal celestial objects in almost all wavelength bands of

the electromagnetic spectrum from 10−5eV (radio) to nearly 1014eV (γ-rays).

In very high energy γ-ray astronomy the Crab Nebula was first detected

with large significance at TeV energies by the pioneering Whipple telescope

(Weekes et al., 1989). The nebula turned out to be the strongest source of

steady very high energy γ-ray emission in the Galaxy. It is therefore used as

the standard ’calibration candle’ for groundbased γ-ray experiments.
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It has been ascertained that its energy can have only one source, a pul-

sar PSR B0531+21 (Crab pulsar) within the nebula, and that most of the

Crab’s radiation can be explained by synchrotron mechanism (Shklovsky,

1953; Dombrovsky, 1954; Vashakidze, 1954; Oort & Walraven, 1956). The

Crab pulsar/Nebula system is one of the most intensely studied astrophys-

ical sources with measurements throughout the electromagnetic spectrum

from the radio to the TeV energy band. The similarity of the spectra of Crab

Nebula and it’s pulsar in the HE domain suggests the unity of their radiation

mechanisms.

In most regions of the spectrum, the characteristic 33ms pulsations of the

pulsar are clearly visible. The pulse profile is unique among known pulsars

in that it is aligned from radio to gamma-ray energies (Lessard et al., 2000).

Investigations of last decade have shown that the aforementioned coincidence

takes places in the HE domain (0.01MeV-25GeV) as well (Aliu et al., 2008).

From 2007 October to 2008 February, the MAGIC Cherenkov telescope has

discovered pulsed emission above 25GeV. The recent detection of HE γ-rays

from the Crab pulsar could be very important (Aliu et al., 2008).

One of the fundamental problems concerning pulsars relates the origin of

the HE electromagnetic radiation. According to the standard approach, two

major mechanisms govern the HE radiation: the inverse Compton scattering

(e.g. Blandford et al. (1990)) and the synchrotron emission (Paereles et

al., 2001). On the other hand, up to now in most of the cases it is not

clear where the location of the HE electromagnetic radiation is: closer to the

pulsar (polar cap model, see for example Daugherty & Harding (1982)) or

farther out in the magnetosphere (outer gap model, see for example Romani

& Yadigaroglu (1995)). An exception is the HE emission recently detected

by the MAGIC Cherenkov telescope (Aliu et al., 2008), which has revealed

that the pulsed radiation above 25GeV is inconsistent with the polar cap

models (due to the observational fact, that the emission region is located in

the outer part of the pulsar magnetosphere). In the outer gap models the

generation of the HE radiation happens in the outer gap region (e. g. Romani

& Yadigaroglu (1995)), which does not contradict with the observational fact
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that the emission happens far out in the magnetosphere, but to our knowledge

there is no mechanism of generation of radio emission.

In the framework of these models, over the star’s surface there is a vacuum

gap with the electric field inside (Ruderman & Sutherland, 1975), which ac-

celerates particles up to relativistic energies leading to the emission process.

Unfortunately, energies of particles accumulated in the gap, are not enough

to explain the observed radiation. To solve this problem several mechanisms

have been proposed. For increasing the gap size, by Usov & Shabad (1985)

the formation of positronium (electron-positron bound state) was consid-

ered. Another mechanism, leading to the enlargement of the gap zone was

introduced by Arons & Scharleman (1979) and the approach was based on a

process of rectifying of the magnetic field lines. This method was applied by

Harding et al. (2008) for studying the high altitude radiation from the pulsar

slot gaps. The authors consider a three-dimensional model of optical and γ-

ray emission from the slot gap accelerator of a spin-powered pulsar and pre-

dict that the slot gap emission below 200MeV will exhibit correlations in time

and phase with the radio emission. A general relativistic approach has been

proposed by Muslimov & Tsygan (1992), where, taking into account the fact

that in the vicinity of the NS (Neutron star), the space-time is curved, the

authors applied the Kerr metric. It was shown that the gap size increases due

to the general relativistic effects. All aforementioned mechanisms provide the

required increase in the gap area, but it is not enough for explaining the ob-

served radiation. These problems provoked a series of works considering the

so-called outer gap models, where for studying emission from pulsars, several

mechanisms have been proposed: the inverse Compton scattering, curvature

radiation and the synchrotron emission.

In the present work we explain the HE radiation of the Crab pulsar re-

lying on our plasma emission model. According to the work Chkheidze et

al. (2010), in the electron-positron plasma of a pulsar magnetosphere the

low frequency cyclotron modes, on the quasi-linear stage of their evolution

create conditions for generation of the HE synchrotron emission. Therefore,

generation of low and high frequency waves is a simultaneous process and it
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takes place in one location of the pulsar magnetosphere (on the light cylin-

der lengthscales). Thus, in the framework of this model the coincidence of

signals indicates that all frequencies having such properties are simultane-

ously generated in one location of the pulsar magnetosphere. This in turn,

restricts possibility of choice of radiation mechanisms. It is clear that the

inverse Compton scattering (ICS) or the curvature radiation cannot provide

the observationally evident coincidence of signals, since they do not have any

restriction on the spacial location of emission (area in the pulsar magneto-

sphere, where the corresponding radiation is produced). As it has been shown

by Machabeli & Osmanov (2009, 2010), neither the curvature radiation nor

the ICS may provide the above mentioned coincidence. In particular, analyz-

ing the ICS, it has been demonstrated that for reasonable physical parameters

even very energetic electrons are unable to produce the photon energies of the

order of 25GeV. Studying the curvature radiation, it has been found that the

curvature drift instability (see Osmanov et al., 2008; Osmanov et al., 2009b)

efficiently rectifies the magnetic field lines making the role of the curvature

emission process negligible (Machabeli & Osmanov, 2010).
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1.3 An outline of the thesis

The Chapter 2 presents the model of the pulsar emission, that we use to

explain the observed properties of individual pulsars. In Section 2.1 we con-

sider the fundamental modes of the pair plasma and check the condition of

their excitation on the cyclotron resonance. The cyclotron instability and its

excitation conditions are investigated in Section 2.2 and the feedback of gen-

erated waves on the distribution of the resonant particles (QLD) is considered

in Section 2.3.

In Chapter 3 the synchrotron emission theory is reviewed. Along with the

standard theory we present our approach, which differs from the standard

one, as it takes into account the mechanism of creation of the pitch-angles.

In Chapter 4 the plasma emission model is applied to the two members

of XDINS: RX J1856.5-3754 and RX J2143.0+0654. It is demonstrated that

the model well explains all the observational features and the fitting results

of the X-ray data with the model are presented.

In Chapter 5 we apply the plasma model to explain the recently detected

HE emission of the Crab pulsar. The observational fact of the coincidence

of signals in low (radio) and HE domains is explained. Considering a new

approach of the synchrotron theory based on our emission model, the spectral

index, β = 2, of the HE emission is explained and the exponential cutoff, with

the cutoff energy - 23GeV is obtained, being in a good agreement with the

observational data. We also discuss other possible radiation mechanisms and

demonstrate their unfitness with the observations.

In Chapter 6 we make conclusions and discuss our results.
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Chapter 2

The plasma emission model

Any well known theory of pulsar emission suggests that, the observed radia-

tion is generated due to processes taking place in electron-positron plasma.

It is generally assumed that the pulsar magnetosphere is filled by dense rela-

tivistic electron-positron plasma flowing along the open magnetic field lines,

which is generated as a consequence of the avalanche process first described by

Goldreich & Julian (1969) and developed by Sturrock (1971) and Tademaru

(1973). A spinning magnetized NS generates an electric field which extracts

electrons from the star’s surface and accelerates them to form a low density

(nb0 = B0/Pce, where P is the pulsar rotation period and B0 is the magnetic

field at the star’s surface) and energetic (the Lorentz factor of particles is

γb ∼ 106−8 for typical pulsars) primary beam. In a weakly curved magnetic

field, electrons generate γ-quanta which in turn produce electron-positron

pairs. The pitch angle of the particles which are produced is non-zero, so that

secondary particles generate synchrotron radiation. This radiation in turn

produces more pairs, and so on until the plasma becomes dense and screens

the electric field. As a result a multicomponent plasma is formed, with an

anisotropic one-dimensional distribution function (see Fig. 2.1 (Arons, 1981)),

containing:

(i) the bulk of plasma with an average Lorentz-factor γ ∼ γp and n ∼ np;

(ii) a high-energy ’tail’ of the distribution function with γ ∼ γt and n ∼ nt;

(iii) the primary beam with γ ∼ γb and n ∼ nb.
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Figure 2.1: Distribution function of a one-dimensional plasma in the pulsar magnetosphere.
Left corresponds to secondary particles, right to the primary beam.

We assume equipartition of energy among the plasma components

npγp ≈ ntγt ≈
nbγb
2
. (2.1)

The relativistic particles undergo drifting perpendicularly to the magnetic

field due to the curvature, ρ, of the field lines. The corresponding drift

velocity is given by

ux =
cVφγres
ρωB

, (2.2)

where Vφ is the component of velocity along the magnetic field lines and γres

is the Lorentz factor of the resonant particles, ωB ≡ eB/mc is the cyclotron

frequency, e and m are the electron’s charge and the rest mass, respectively

and c is the speed of light.

The distribution function is one-dimensional and anisotropic and plasma

becomes unstable, which can lead to excitation of the fundamental plasma

modes in the pulsar magnetosphere (Sagdeev & Shafranov , 1960). Both of

these factors (the one-dimensionality of the distribution function and the drift

of particles) might cause generation of eigen modes in the electron-positron

plasma if the following resonance condition is satisfied (Kazbegi et al., 1992)

ω − kφVφ − kxux +
sωB
γres

= 0, (2.3)
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Figure 2.2: Cylindrical coordinate system (ρ is a local radius of curvature)

where Vφ ≈ c(1 − u2x/c
2 − 1/2γ2r ), k

2
φ + k2⊥ = k2, k2⊥ = k2x + k2r and s =

0,±1,±2, ... Here a cylindrical coordinate system is chosen, with the x-axis

directed perpendicular to the plane of the field lines, while r and φ are the

radial and azimuthal coordinates (see Fig. 2.2). For s = 0 one has a hollow

cone of the modified Cherenkov radiation (Kazbegi et al., 1992; Lyutikov et

al., 1999a; Shapakidze et al., 2003) and when s = +1 (the cyclotron reso-

nance) one has the core emission, being a result of the anomalous Doppler

effect.

To explain the observed emission of individual pulsars, we rely on the

pulsar emission model first developed by Machabeli & Usov (1979) and Lom-

inadze et al. (1979). According to these works, the main mechanism of wave

generation in plasmas of the pulsar magnetosphere is the cyclotron instabil-

ity, which develops on the light cylinder length-scales. Due to the cyclotron

resonance, the low frequency cyclotron modes (which might be detected by an

observer, as they are vacuum-like waves and can leave the magnetosphere di-

rectly), on the quasi-linear evolution stage of the instability create conditions

for generation of the high energy synchrotron emission.
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2.1 Fundamental modes of electron-positron plasma

It is essential to consider the eigen-modes of pair plasma, for studying the

development of the cyclotron instability in the pulsar magnetosphere. The

properties of a highly magnetized relativistic electron-positron plasma have

been investigated quite thoroughly (Volokitin, Krasnoselskikh & Machabeli

, 1985; Arons & Barnard, 1986; Lominadze et al., 1986). Differently from

electron-ion plasma, in pair plasma gyrotropy is absent. Let us assume that

the relative streaming of the plasma electrons and positrons

△γ =

∫
γf +dγ −

∫
γf −dγ ≈ 0, (2.4)

where f − and f + are the one-dimensional distribution functions of electrons

and positrons, which are normalized such that
∫
f ±dγ = 1. The distribution

function of electrons is assumed to be identical with that of the positrons, in

which case the dielectric tensor

εij =


ε11 0 ε13

0 ε22 0

ε31 0 ε33

 . (2.5)

The Vlasov kinetic equation along with the Maxwell’s equations in linear

approximation give (Volokitin, Krasnoselskikh & Machabeli , 1985):
k2∥
ω2 − ε11 0

k∥k⊥c
2

ω2 − ε13

0 k2c2

ω2 − ε22 0
k∥k⊥c

2

ω2 − ε31 0
k2⊥
ω2 − ε33



E1

E2

E3

 = 0, (2.6)

where the electric field of waves is represented as

E =
1

2
E0exp[i⃗kr⃗ − iωt] + c.c. (2.7)

The wave vector k⃗ = (k⊥, 0, k∥), so that k⊥ = k sinψ and k∥ = k cosψ (ψ is

the angle between the wave vector and the magnetic field). The waves propa-

gating in such a plasma are only linearly polarized. The nonzero components
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of the dielectric tensor have the form

ε11 = ε22 = 1 +
ω2
p

ω

∫
(ω − k∥V∥)γ

−1

(ω̃2
B − k∥V∥)2

f(p∥, p⊥)dp; (2.8)

ε33 = 1−
∫

ω2
p

γ3(ω − k∥V∥)2
f(p∥, p⊥)dp; (2.9)

ε13 = ε31 =
ω2
p

ω2

∫
k∥V∥(ω − k∥V∥)γ

−1

(ω − k∥V∥)2 − ω̃2
B

f(p∥, p⊥)dp; (2.10)

here

ω2
p =

8πe2np
m

, ω̃B =
ωB
γ
. (2.11)

The set of equations (2.6) splits into three equations, which correspond to

three types of fundamental modes having small inclination angles with respect

to the magnetic field: the transverse extraordinary X-mode (t-wave) with the

electric field perpendicular to the (k⃗B⃗) plane and the longitudinal-transverse

mode (lt1,2) with the electric field in the (k⃗B⃗) plane with two branches: the

ordinary (O) and Alfvén (A) mode. The higher frequency branch (lt1) on the

diagram ω(k) begins with the Langmuir frequency and for longitudinal waves

(k⊥ = 0) lt1 reduces to the pure longitudinal Langmuir mode (see Fig. 2.3).

lt1 is a superluminal wave υph > c (υph is the phase velocity of the wave) and

can not be excited by particles, thus, we do not consider it farther. The lower

frequency branch, lt2, is similar to the Alfvén wave. Analytical expressions

for dispersion of these modes are available in some limits. When k⊥ = 0, the

t-mode merges with the lt-modes and corresponding spectra in the laboratory

frame is given by (Kazbegi et al., 1992)

ωt ≈ kc (1− δ) , δ =
ω2
p

4ω2
Bγ

3
p

(2.12)

The resonance condition (2.3) (s = ±1) for t-waves with the spectrum

(2.12) takes the form (Lyutikov et al., 1999b)

1

2γres
+

(k⊥/kφ − ux/c)
2

2
+

1

2

k2r
k2φ

− δ = ± ωB
γreskφc

. (2.13)
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Figure 2.3: Dispersion curves for the waves in electron-positron plasma. There are three
modes represented by the dashed (ordinary mode), solid (extraordinary mode) and long-
dashed (Alfvén mode) lines. The dotted line represents the vacuum-dispersion relation.

From this equation we see that for wave generation by the anomalous Doppler

effect (the minus sign), the following condition has to be satisfied

δ >
1

2γres
+

(k⊥/kφ − ux/c)
2

2
+

1

2

k2r
k2φ
. (2.14)

The value of δ is pretty small and the fulfilment of the condition (2.14) is quite

difficult. But the relation ω2
p/ω

2
B ∼ (r/r0)

3 (r0 is the pulsar radius) grows

as a cube of the distance and if γ3p ∼ 100 (Rankin, 1983) for typical pulsar

parameters the condition (2.14) is satisfied at distances r ∼ 109cm. Let us

define the frequency of t-waves excited due to the cyclotron resonance. The

resonance condition is easily derived for the small angles of propagation with

respect to the magnetic field. Using the expression (2.12) for the dispersion

of t-waves and neglecting the drift term the resonance condition (2.3) may

then be written as
1

2γ2res
− δ +

α2

2
= − ωB

ωγres
. (2.15)

First we note that Eq. (2.15) requires that 1/(2γ2res) < δ and α2/2 < δ
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(here α is the angle between the wave vector and the magnetic field). First

condition demonstrates that the particle is moving through the plasma with

a higher velocity than the phase velocity of the wave. The second condition

limits the emission to the small angles with respect to the magnetic field.

For typical parameters of pulsars we have 1/(2γ2res) ≪ δ and α2/2 ≪ δ.

Consequently, from (2.15) we find

ω ≈ ωB
γresδ

. (2.16)

Mostly the generated waves come in the radio domain. The plus sign of Eq.

(2.13) corresponds to wave damping by normal Doppler effect, which appears

to be effective for smaller γres ≈ γp.

So, due to the one-dimensionality of the distribution function, the radio

waves are generated in the outer parts of the pulsar magnetosphere by par-

ticles with high Lorentz factors. But the particles with lower Lorentz factors

cause wave damping if the resonance condition (2.3) is satisfied. Conse-

quently, for wave generation along with the one-dimensionality of the dis-

tribution function it’s also essential that it is anisotropic. The distribution

function has the elongated tail in the direction of higher impulses. Thus,

waves that come in the resonance with ’tail’ and ’beam’ electrons may be

generated.

2.2 Cyclotron instability and its excitation conditions

To study the cyclotron instability in a pulsar magnetosphere we use the

kinetic equation in the plasma’s rest frame of the form

∂f

∂t
+ v

∂f

∂r
+

∂

∂p

{(
G+ F+Q+

e

c
[v,B0]

)
f
}
+ e

(
E+

1

c
[v,B]

)
∂f

∂p
= 0,

(2.17)

where f (t, r,p) is the particle distribution function, B0 is the magnetic field

of the pulsar magnetosphere, E and B are the intensities of the electric and

magnetic fields of induced perturbations, respectively, G is the force acting

on the particle and caused by inhomogeneity of the magnetic field B0(r), F
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and Q are the radiation deceleration forces produced by particle emission

(synchrotron and curvature radiation, in particular).

The magnetic field B0(r) is assumed to be weakly inhomogeneous - i.e.,

λ

B0

∂B0(r)

∂r
≪ 1; (2.18)

implying that the length of the excited waves λ is considerably less than the

characteristic dimensions of the magnetic field inhomogeneity.

Dividing the distribution function into background and pulsating compo-

nents

f = f 0 + f̃ , (2.19)

we can average (2.17) over quick pulsations. Using the method of successive

approximations for a weak turbulence, when

|E|2

4πnpmc2γp
≪ 1, (2.20)

and taking into account that ⟨f⟩ = f 0 and ⟨f̃⟩ = 0 (angular brackets denote

averaging over pulsations) we have

∂f 0

∂t
+ v

∂f 0

∂r
+

∂

∂p

{
(G+ F+Q)f 0

}
= −e

⟨(
E+

1

c
[v,B]

)
∂f

∂p

⟩
, (2.21)

∂f̃

∂t
+ v

∂f̃

∂r
+

∂

∂p

{e
c
[v,B0]f̃

}
= −e

(
E+

1

c
[v,B]

)
∂f 0

∂p
. (2.22)

Equation (2.22) does not take into account the contribution from G. For

the typical pulsar parameters, it is possible if γψ ≪ 1010, which is obviously

fulfilled. Note that the right-hand side of Eq. (2.21) describes diffusion of

resonant particles caused by their interaction with the excited pulsations.

The plasma distribution function is one-dimensional and anisotropic (see

Fig. 2.1). Thus, at a certain distance from the pulsar it may become unstable

with regard to the excitation of the cyclotron oscillations on the anomalous

Doppler effect (s = +1 in Eq. (2.3)) (Kawamura & Suzuki, 1977; Lominadze

et al., 1979).

Let us consider the perturbations of such a type, propagating along the
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magnetic field k ∥ B0, with the electric vector E perpendicular to B0. Then,

for each kind of particles from Eq. (2.22) we have

f̃(k, ω) = −ie
2
{ (Ex − iEy)(px + ipy)

(ω − kφVφ − k⊥u⊥ + ωB/γ)
+

+
(Ex + iEy)(px − ipy)

(ω − kφVφ − k⊥u⊥ − ωB/γ)
}L̂f 0, (2.23)

L̂ ≡
(
1− kφVφ

ω

)
1

p⊥

∂

∂p⊥
+

kφ
mγω

∂

∂p∥
, (2.24)

where

px = p⊥ cosφ, py = p⊥ sinφ. (2.25)

Using Eq. (2.23), one can calculate the expression for the current density

and its substitution into the Maxwell’s equation gives

1− k2c2

ω2
−
∑ 4πe

mω

∫
f∥(p∥)dp∥

γ(ω − kφVφ − k⊥u⊥ ∓ ωB/γ)
= 0, (2.26)

where

f∥(p∥) =

∫
f 0p⊥dp⊥. (2.27)

The dispersion relation (2.26) allows the following solution

ω = ±kc

(
ω2
B − 2ω2

p

ω2
B + 2ω2

p

)1/2

. (2.28)

From this expression it follows that, if the condition 2ω2
p > ω2

B is fulfilled,

develops a hydrodynamic hose instability, which causes ’catastrophe’ - all

particles take place in extraction of parallel and transversal energy. Therefore,

the condition ω2
B > 2ω2

p excludes the hose instability, and under the resonance

condition

ω − kφVφ − k⊥u⊥ ± ωB
γres

= 0 (2.29)

we obtain (Lominadze et al., 1979)

Im ω ≡ Γc =
π2e2

kφ

∑{
f∥

(
mω3

B

kφω2
p

)
− f∥

(
mωB
kφ

)}
. (2.30)
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The second term in the braces of Eq. (2.30) describes the decay of cy-

clotron oscillations on plasma particles and the first term corresponds to

wave excitation.

2.3 The feedback of generated waves on

the distribution of the resonant particles –

the quasi-linear diffusion

During the generation of t or lt modes by resonant particles, one also has

a simultaneous feedback of these waves on the electrons (Vedenov et al.,

1961). This mechanism is described by quasi-linear diffusion (QLD), leading

to the diffusion of particles as along as across the magnetic field lines. The

process of the QLD in the external magnetic field is examined in a series of

books (Melrose & McPhedran, 1991; Akhiezer, 1967). Generally speaking,

at the pulsar surface relativistic particles efficiently loose their perpendicular

momenta via synchrotron emission in very strong (B ∼ 1012G) magnetic

fields and therefore, they very rapidly transit to their ground Landau state

(pitch angles are vanishing). Contrary to this process, the QLD leads to the

re-creation of the pitch angles by resonant particles.

Using expression (2.23) for f̃(k, ω) we can obtain the right-hand side of

Eq. (2.21), which describes the process of the re-distribution of the resonant

particles during the development of the cyclotron instability. Assuming that

E = (Ex, 0, 0), we will get

SQLD ≡ e

⟨(
E+

1

c
[v,B]

)
∂f

∂p

⟩
=

=
πe2

2

∫
dk|Ek|2L̂

p2⊥
2
δ(ω − k∥V∥ + ωB/γ)L̂f

0, (2.31)

where δ is the Dirac function.

Equation (2.31) describes the diffusion of particles caused by the interac-

tion of the excited waves with the resonant particles and can be written in
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the form (Lominadze et al., 1979)

SQLD =
1

p⊥

∂

∂p⊥

{
p⊥D⊥,⊥

∂f 0

∂p⊥

}
+

1

p⊥

∂

∂p⊥

{
p⊥D⊥,∥

∂f 0

∂p∥

}
+

+
∂

∂p∥

{
D∥,⊥

∂f 0

∂p⊥

}
+

∂

∂p∥

{
D∥,∥

∂f 0

∂p∥

}
, (2.32)

where D⊥,⊥, D∥,⊥, D⊥,∥ and D∥,∥ are the diffusion coefficients.

The wave excitation leads to a redistribution process of the particles via

QLD. Using expression (2.32) we rewrite the Eq. (2.21) in the following form

(Machabeli & Usov, 1979; Malov & Machabeli, 2002):

∂f 0

∂t
+

∂

∂p∥

{
(G∥ + F∥ +Q∥)f

0
}
+

1

p⊥

∂

∂p⊥

{
p⊥(G⊥ + F⊥)f

0
}
=

=
1

p⊥

∂

∂p⊥

{
p⊥

(
D⊥,⊥

∂

∂p⊥
+D⊥,∥

∂

∂p∥

)
f 0 (p)

}
+

+
∂

∂p∥

{(
D∥,⊥

∂

∂p⊥
+D∥,∥

∂

∂p∥

)
f 0 (p)

}
. (2.33)

where F - is the radiation deceleration force produced by synchrotron emis-

sion, Q∥ is the reaction force of the curvature radiation and G is the force

responsible for conserving the adiabatic invariant p2⊥/B(r) = const. They

can be written in the form (Landau & Lifshitz, 1971):

G⊥ = −c
ρ
p⊥, G∥ =

c

ρ

p2⊥
p∥
, (2.34)

F⊥ = −αs
p⊥
p∥

(
1 +

p2⊥
m2c2

)
, F∥ = − αs

m2c2
p2⊥, (2.35)

Q∥ = −αcp4∥, (2.36)

where αs = 2e2ω2
B/3c

2, αc = 2e2/3ρ2(mc)4.

The diffusion coefficients in Eq. (2.33) are evaluated in the momentum
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space as (Melrose & McPhedran, 1991):
D⊥,⊥

D⊥,∥ = D∥,⊥

D∥,∥

 =

∫
d3k

(2π)3
π2e2υ2 sin2 ψ

~2ω2

|Ek|2

4π
×

×δ(ω(k)− k∥υ∥ + ωB/γ)


(∆p⊥)

2

(∆p⊥)(∆p∥)

(∆p∥)
2

 . (2.37)

Where |Ek|2/4π is the density of electric energy in the excited waves and

∆p⊥ = − ~ωB
γυ sinψ

, ∆p∥ = ~k∥. (2.38)

The evaluation in our case gives (Chkheidze et al., 2010)
D⊥,⊥

D⊥,∥ = D∥⊥

D∥,∥

 =


Dδ|Ek|2k=kres
−Dψ|Ek|2k=kres
Dψ2 1

δ |Ek|2k=kres

 , (2.39)

where D = e2/8c.

The pitch-angle acquired by resonant particles during the process of QLD

satisfies ψ = p⊥/p∥ ≪ 1. Thus, one can assume ∂/∂p⊥ >> ∂/∂p∥ which

reduces Eq. (2.33) to the following form

∂f 0

∂t
+

1

p⊥

∂

∂p⊥

[
p⊥(F⊥ +G⊥)f

0
]
=

1

p⊥

∂

∂p⊥

[
p⊥D⊥,⊥

∂f 0

∂p⊥

]
. (2.40)

Now let us compare the transverse components of the forces G and F . If

we consider the case γψ ≫ 1 we will have :

G⊥

F⊥
=

3m3c6

2e4B2
0

γ

ρ

(
r

r0

)6
1

γ2ψ2
, (2.41)

where r is the distance from the pulsar. For the typical parameter values of

pulsars |G⊥| ≪ |F⊥|.
The transversal quasi-linear diffusion increases the pitch-angle, whereas
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force F resists this process, leading to the stationary state (∂f/∂t = 0). Then

the solution of Eq. (2.40) is

f(p⊥) = Cexp

(∫
F⊥

D⊥,⊥
dp⊥

)
= Ce

−
(

p⊥
p⊥0

)4

. (2.42)

To evaluate p⊥0
, we use the quantity |Ek|2 ≈ mc2nbγbc/(2ω), where ω is the

frequency of original waves, excited during the cyclotron resonance and can

be estimated from expression (2.16). Consequently, we will get

p⊥0
≈ π1/2

Bγ2p

(
3m9c11γ5b
32e6P 3

)1/4

. (2.43)

As a result of the appearance of the pitch angles, the synchrotron emission

is generated.
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Chapter 3

Synchrotron emission

In a number of papers (Chkheidze & Machabeli, 2007; Chkheidze et al., 2010;

Chkheidze, 2011), we attempted to describe the emission spectra of individual

pulsars under the assumption of a synchrotron mechanism. The theory of the

synchrotron emission of ultrarelativistic electrons was well developed before

the discovery of pulsars. Thus, its interpretation with the high frequency

radiation of pulsars did not require any farther development of the theory.

In the standard theory of the synchrotron emission (Bekefi & Barrett, 1977;

Ginzburg, 1981), unlike the present model, it is supposed that the observed

radiation is collected from a large spacial region in various parts of which, the

magnetic field is oriented randomly. Thus, it is supposed that along the line

of sight the magnetic field directions are chaotic leading to the broad interval

(from 0 to π) of the pitch angles. According to our model the emission

comes from a region of the pulsar magnetosphere where the magnetic field

lines are practically straight and parallel to each other. Contrary to the

standard scenario, as we have already outlined, in the pulsar magnetospheres

the magnetic field is very strong and pitch angles rapidly vanish. The present

model provides all necessary conditions for re-creation of the pitch angles, and

as we take into account the mechanism of creation of the pitch angles, their

possible values are inevitably restricted.
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3.1 Synchrotron radiation of a single electron

Synchrotron emission is a type of radiation generated by charged particles

spiralling around magnetic field lines at close to the speed of light. The

spiral motion of the electron along the uniform magnetic field line can be

split into motion along the magnetic field direction with the constant velocity

υ∥ = υ cosψ and circular motion with the velocity υ⊥ = υ sinψ and radius

rB = cmυ⊥γ/eB about it. The angular frequency of the electron in its orbit

is ω̃B = ωB/γ. Synchrotron emission of a single electron is strongly beamed

along the direction of motion in a cone of approximate opening half-angle

∼ 1/γ. Therefore, the observer detects the significant radiation when the

angle between the observer’s axis and υ⃗ is less than 1/γ. When the pitch-

angle of the particle ψ > 1/γ the observer receives emission impulses with the

width △t that are separated by time interval T . The quantity T is defined by

the angular frequency of the electron and Doppler’s effect (Ginzburg, 1981)

T =
2π

ω̃B

(
1−

υ∥ cosψ

c

)
. (3.1)

The duration of the emission impulse

△t ≈ mc

eB⊥

1

γ2
, (3.2)

where B⊥ = Bsinψ. The synchrotron spectrum consists of the harmonics

with the fundamental frequency

ω0 =
2π

T
=

eB

mcγ

1

1− (υ∥/c) cosψ
. (3.3)

And the maximum of the emission spectrum comes on frequency

ωm ≃ 1

△t
≈ eB⊥γ

2

mc
. (3.4)

As for ultrarelativistic particles ωm ≫ ω0, the synchrotron emission is as-

sumed as continuous radiation. Thus, one can introduce the spectral flux
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density of the synchrotron emission of a single electron as

p̃∗ν =
3

4π2r2
e3B

mc2ξ

(
ν

νc

)2(
1 +

χ2

ξ2

)[
K2

2/3(gν) +
χ2

ξ2
K2

1/3(gν)

]
, (3.5)

where ξ = 1/γ, χ is the angle between υ⃗ and the observer’s axis,

gν =
ν

2νc

(
1 +

ψ2

ξ2

)3/2

, (3.6)

νc =
3eB⊥

4πmc
γ2, (3.7)

r is the distance between the observer and the emitting particle, K1/3 and

K2/3 are the Macdonald functions (Ginzburg, 1981).

Now let us find the spectral distribution of the synchrotron radiation of

a single electron p∗ν. For this reason one should integrate the expression

(3.5) over a closed surface around the emitting particle. The quantity p̃∗ν

tends rapidly to zero when χ > ξ. Thus, when integrating it over the closed

surface the significant contribution brings in only the annular sector △Ω =

2π sinψ△ χ. Consequently we can write

p∗ν = 2πr2 sinψ

∫ +∞

−∞
p̃∗νdχ. (3.8)

The integral (3.8) can be rewritten as (Ginzburg, 1981)

p∗ν =

√
3e3B⊥

mc2 sin2 ψ

ν

νc

∫ ∞

ν/νc

K5/3(z)dz. (3.9)

The observed spectral flux density p̃∗ν is not equal to emitted spectral power

density pν. The reason for this is the finite speed of propagation of radiated

photons. In particular, the photons emitted during the time period dt′ will

be detected by observer during the time period dt = dt′(1− υr/c), where υr

is the electron’s velocity projection on the observer’s direction. In our case

υr = υ cos2 ψ. Consequently we will have

pν = p∗ν

(
1− υ

c
cos2ψ

)
≈ p∗ν sin

2 ψ =

√
3e3B⊥

mc2
ν

νc

∫ ∞

ν/νc

K5/3(z)dz. (3.10)

27



The maximum of synchrotron spectrum of a single electron comes on fre-

quency

νm = 0.29νc = 0.07
eB⊥

mc
γ2 ≈ 1.2 · 106B⊥γ

2Hz. (3.11)

The synchrotron emission power density can be approximately expressed

for lower (ν ≪ νm) and higher (ν ≫ νm) frequencies in the following form

pν ≃
√
3e3B⊥

mc2
×

 22/3Γ
(
2
3

) (
ν
νc

)1/3
, if ν ≪ νm√

π
2
ν
νc
exp

(
− ν
νc

)
, if ν ≫ νm

 . (3.12)

Here Γ(2/3) - is a Gamma function.

If we integrate pν over the frequency, we will get the expression for the

energy loss rate of the emitting particle

−dεe
dt

=
2

3
c

(
e2

mc2

)2

B2
⊥

( εe
mc2

)2
, (3.13)

where εe is the energy of the electron. The characteristic time of energy loss

by relativistic electron via synchrotron emission is

τ ≡ εe
dεe/dt

=
5.1 · 108

B2
⊥(εe/mc

2)
s. (3.14)

3.2 Synchrotron spectrum of the set of electrons

3.2.1 The standard approach

Let us consider the synchrotron emission of the set of electrons. If the set

of emitting particles is stationary or changes quite slowly, one should use

quantity p̃ν = p̃∗νsin
2ψ in place of p̃∗ν. The number of emitting particles in

the elementary dV volume is f dεdV dΩτ , with the energy from the interval

ε, ε + dε and with velocities that lie inside the solid angle dΩτ near the

direction of τ⃗ (here f is the distribution function of the emitting particles).

If the emission of individual electrons is incoherent, then p̃ν is the additive

28



quantity and the emission flux of the set of electrons will be (Ginzburg, 1981)

Fν =

∫
p̃νfdεdV dΩτ . (3.15)

The integration over dΩτ in this case can be done in the general form. In

particular, the integrand is nonzero only in a small angular interval △χ ∼
1/γ. Thus, when integrating (3.15) over dΩτ the significant contribution is

only brought in by the narrow annular sector △Ωτ = 2πsinα △ χ, where

α = ψ − χ ≈ ψ - is the angle between the magnetic field and the observer’s

direction. Consequently, one can extend the integration over χ to the entire

band from −∞ to +∞. Taking into account the Eqs. (3.8) and (3.9), in

place of (3.15) we will get

Fν =

√
3e3

mc2

∫
f(ε)B sinψ

(
ν

νc

)[∫ ∞

ν/νc

K5/3(z)dz

]
dε (3.16)

Let us consider the synchrotron emission of the set of electrons with a

power-law energy distribution

f ∝ ε−a, εmin ≤ ε ≤ εmax
(
εmax ≫ εmin

)
. (3.17)

If we change the integration variable ε by x = ν/νc the integral (3.16) will

take the form

Fν =

√
3e3

2mc2

(
3e

4πm3c5

)1/2(a−1)

(B sinψ)1/2(a+1)ν−1/2(a−1) ×

×
[
G

(
ν

νc

)
max

−G

(
ν

νc

)
min

]
, (3.18)

where

G(y) =

∫ ∞

y

x1/2(a−1)

∫ ∞

x

K5/3(z)dzdx. (3.19)

It is obvious that choosing the various values for a, εmax and εmin we can

obtain various spectral distributions. But if the values of εmax and εmin are

such that, in the given frequency domain the conditions (ν/νc)max ≪ 1 and
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(ν/νc)min ≫ 1 are fulfilled, the integral (3.19) is close to G(0)

G(0) = 21/2(a−3)a+
7
3

a+ 1
Γ

(
3a− 1

12

)
Γ

(
3a+ 7

12

)
. (3.20)

Consequently, we will have

Fν ∝ (B sinψ)1/2(a+1)ν−1/2(a−1). (3.21)

In the standard theory of the synchrotron emission (Ginzburg, 1981), it is

supposed that the observed radiation is collected from a large spacial region

in various parts of which, the magnetic field is oriented randomly. Thus,

it is supposed that along the line of sight the magnetic field directions are

chaotic. Hence, to find the emission flux, we need to average Eq. (3.21) over

all directions of the magnetic field (which means integration over ψ varying

from 0 to π). Taking into account, that

1/2

∫ π

0

(sinψ)1/2(a+1) sinψdψ =

√
π

2

Γ(1/4(a+ 5))

Γ(1/4(a+ 7))
. (3.22)

We can write

Fν ∝ ν−β, β = 1/2(a− 1). (3.23)

This is a power-law synchrotron emission flux of the set of electrons with the

homogeneous and isotropic energy distribution (3.17) in the chaotic magnetic

field.

3.2.2 The model

Contrary to the standard scenario, we take into account the mechanism of

creation of the pitch angles. As we have already outlined in the previous

chapter, at the pulsar surface the magnetic field is very strong and pitch an-

gles rapidly vanish. The present model provides all necessary conditions for

re-creation of the pitch angles on the light cylinder length-scales (the region

of the pulsar magnetosphere near the light cylinder where the magnetic field

lines are practically straight and parallel to each other). We obtain a certain

distribution function of the emitting particles from their perpendicular mo-
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menta (see Eq. (2.42)), consequently restricting their values. Synchrotron

emission is generated as a result of the appearance of pitch angles.

Let us find the spectral distribution of synchrotron emission of the set of

electrons in the framework of the present model. The number of emitting

particles in the elementary dV volume is p⊥f dp⊥dp∥dV dΩτ , with momenta

from the intervals [p⊥, p⊥ + dp⊥] and [p∥, p∥ + dp∥], and with the velocities

that lie inside the solid angle dΩτ near the direction of τ⃗ . If we write the

parallel distribution function of the emitting particles as
∫
p⊥fdp⊥ ≡ f∥(p∥),

then the emission flux of the set of electrons will be

Fν =

∫
p̃νf∥(p∥)dp∥dV dΩτ , (3.24)

here p̃ν is the additive quantity, as the observed synchrotron radiation wave-

length λ is much less than the value of n−1/3 - the average distance between

particles, where n is the density of plasma component electrons. After in-

tegrating Eq. (3.24) over dΩτ as in previous case and using the expression

(3.9), the integral (3.24) takes the form

Fϵ ∝
∫

f∥(p∥)Bψ
ϵ

ϵm

[∫ ∞

ϵ/ϵc

K5/3(z)dz

]
dp∥ (3.25)

(we changed ν by photon energy ϵ = hν, here h is the Planck constant).

If we substitute the mean value of the pitch-angle from Eq. (2.43) in the

expression for ϵc ≈ 5 · 10−12Bψγ2keV, we will have

ϵc ≃ 5 · 10−12π
1/2

γ2p

(
3m5c7γ9b
32e6P 3

)1/4

(3.26)

To find the synchrotron flux in our case, we need to know the one-dimensional

distribution function of the emitting particles f∥. Let us multiply both sides

of Eq. (2.33) on p⊥ and integrate it over p⊥. Using Eqs. (2.34), (2.35), (2.36)

and also taking into account that the distribution function vanishes at the

boundaries of integration, Eq. (2.33) reduces to

∂f∥
∂t

=
∂

∂p∥

[(
αs

m2c2π1/2
p2⊥0

+ αcγ
4 − e2

4mc2γ
|Ek|2

)
f∥

]
. (3.27)

31



Let us estimate the contribution of different terms on the righthand side of

Eq. (3.27). The estimations show that for the typical parameters of pulsars,

the first term is much bigger than the two other terms. Consequently, instead

of Eq. (3.27), one gets

∂f∥
∂t

=
∂

∂p∥

( αs
m2c2π1/2

p2⊥0
f∥

)
. (3.28)

Considering the quasi-stationary case we find

f∥ ∝
1

p
1/2
∥ |Ek|

. (3.29)

For γψ ≪ 1010, a magnetic field inhomogeneity does not affect the process

of wave excitation. The equation that describes the cyclotron noise level, in

this case, has the form (Lominadze et al., 1983)

∂|Ek|2

∂t
= 2Γc|Ek|2f∥, (3.30)

where

Γc =
π2e2

k∥
f∥(pres), (3.31)

is the growth rate of the instability and is defined from Eq. (2.30). Here k∥

can be found from expression (2.16) for the frequency of the excited waves

k∥res ≈
ωB
cδγres

. (3.32)

Combining Eqs. (3.28) and (3.30) one finds

∂

∂t

f∥ − α
∂

∂p∥

|Ek|
p
1/2
∥

 = 0, (3.33)

α ≡

(
4

3

e2

π5c5
ω6
Bγ

3
p

ω2
p

)1/4

, (3.34)
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which reduces to f∥ − α
∂

∂p∥

|Ek|
p
1/2
∥

 = const. (3.35)

Taking into account that for the initial moment the major contribution

of the lefthand side of the Eq. (3.35) comes from f∥0, the corresponding

expression writes as

f∥ − α
∂

∂p∥

|Ek|
p
1/2
∥

 = f∥0. (3.36)

The distribution function f is proportional to n ∼ 1/r3, then one should

neglect f∥ in comparison with f∥0. Consequently, the above equation reduces

to

α
∂

∂p∥

 |Ek|
p
1/2
∥

+ f∥0 = 0. (3.37)

As we can see the function Ek(p∥) drastically depends on the form of the initial

distribution of the resonant electrons. According to the work, (Goldreich &

Julian, 1969), a spinning magnetized NS generates an electric field which

extracts electrons from the star’s surface and accelerates them to form a

low-density (nb = B/Pce) and energetic primary beam. We only know the

scenario of creation of the primary beam, but nothing can be told about

its distribution, which drastically depends on the NS surface properties and

temperature. To our knowledge there is no convincing theory which could

predict the form of the distribution function of the beam electrons. Thus, we

can only assume that the beam electrons have a power-law distribution

f∥0 ∝ p−n∥ , (3.38)

and for the energy density of the waves we get

|Ek|2 ∝ p3−2n
∥ . (3.39)
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The effective value of the pitch angle depends on |Ek|2 as follows

ψ0 =
1

2ωB

(
3m2c3

p3∥

ω2
p

γ3p
|Ek|2

)1/4

. (3.40)

Using expression (3.29), (3.39) and (3.40), and replacing the integration vari-

able p∥ by x = ϵ/ϵm, from Eq. (3.25) we will get (Chkheidze et al., 2010)

Fϵ ∝ ϵ−
2−n
4−n

∫
x

2−n
4−n

[∫ ∞

x

K5/3(z)dz

]
dx. (3.41)

The integral (3.41) can be approximately expressed by two different types of

functions, depending on the values of ϵmax, ϵmin, p∥max
and p∥min

Fϵ ∝

{
ϵ−µ

ϵ−µexp (−ϵη)

}
, (3.42)

where η > 0 and µ takes as positive, also the negative values. Consequently,

we conclude that the observed synchrotron spectrum of the set of electrons

with the power-law distribution function might be: the power-law, or the

power-law with an exponential cutoff.
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Chapter 4

RX J1856.5-3754 and

RX J2143.0+0654 (RBS1774)

RX J1856.5-3754 (hereafter RXJ1856) is one of the brightest nearby isolated

neutron stars, and considerable observational resources have been devoted to

it. RXJ1856 was discovered by ROSAT as an X-ray source (Walter et al.,

1996). According to the observational evidence, the emission of RXJ1856

did not show any significant periodic variations, and the featureless X-ray

spectrum was best fitted by the Planckian spectrum with a temperature

kT∞
bb ≃ 63 ± 3eV (Burwitz et al., 2003). Thus, it has been proposed that

the emission of this source has a thermal nature and every effort directed to

making a model which would describe the overall spectra well.

Walter & Mattews (1997) and Neuhäuser &Walter (1998) found an optical

counterpart for RXJ1856 with V = 26mag. This and the large proper motion

of ≃ 0.33mas yr−1 (Walter, 2001; Neuhäuser, 2001) are additional arguments

that it is indeed an isolated NS. Walter (2001) also detected parallactic mo-

tion, determined the distance to the source d = 61+9
−8pc and suggested that

RXJ1856 could be the remnant of the original primary of ζ Oph the system.

This implies a NS age of ∼ 106yr.

First spectral modeling of RXJ1856 has been presented by (Pavlov et al.,

1996). It is shown that the light element (hydrogen or helium) nonmagnetic

NS atmosphere models can be firmly ruled out, because they overpredict
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the optical flux by a large factor. On the other hand, no acceptable fit

can be obtained with iron and standard solar-mixture atmosphere models,

because the features predicted by these models are not detected with high

significance. Doppler smearing of the spectral lines due to fast rotation of an

NS does not completely wash away the strongest spectral features (Pavlov,

Zavlin & Sanwal, 2002; Braje & Romani, 2002). Similar problems occur for

highly magnetized NS atmosphere models (Rajagopal et al., 1997; Zavlin et

al., 2002), so one has to conclude that the classic NS atmosphere models are

unable to explain the observed X-ray emission of RXJ1856.

Different explanations have been considered (e.g., Burwitz et al. (2001);

Turolla, Zane & Drake (2004). It has been proposed that the star has no

atmosphere but a condensed matter surface. The mentioned surface might

result in a virtually featureless Planckian spectrum in the soft X-ray band.

Yet another problem arose from the fact that the parameters derived from

X-rays do not fit the optical spectrum with an intensity 6 times higher than

that of X-ray emission. This situation led Pons et al. (2002) to introduce

the overall spectra by two components. In this model the soft-component of

kT∞
bb ≃ 20eV represents radiation from a relatively cool surface and fit the

optical data, when the hard component of kT∞
bb ≃ 55eV emitted from ∼ 20%

of the NS surface is responsible for the X-ray emission.

The current thermal emission models are unable to satisfactorily explain

the data. The most adequate fits of the spectra give models which assume

that the star has a thin, magnetic, partially ionized hydrogen atmosphere

superposed on a condensed matter surface (Motch et al., 2003; Ho et al.,

2007). However, the origin of such thin hydrogen layers fitting the data is a

problematic issue.

RBS1774 (1RXS J214303.7+065419) has been the most recent XDINS to

be found (Zampieri et al., 2001). Its X-ray spectrum is well reproduced by

an absorbed blackbody with a temperature kT ∼ 100eV and with a total

column density of nH ∼ 3 · 1020cm−2. Application of more sophisticated, and

physically motivated models for the surface emission (atmospheric models)

result in worse agreement with the data (Zane et al., 2005). According to
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Schwope et al. (2009), a fit to the X-ray spectra extracted from RGS spectro-

graphs onboard XMM-Newton yields that the best result is obtained when

the two-temperature blackbody model is used. But the same model applied

to the X-ray spectra extracted from three EPIC detectors does not improve

the fit compared to the simple blackbody model.

Zane et al. (2008) revealed a spectral feature at ∼ 0.7 keV. The most

likely interpretation is that it is due to proton cyclotron resonance, which

implies ultrastrong magnetic field of Bcyc ∼ 1014G (Zane et al., 2005; Rea et

al., 2007). Although, the required strong magnetic field is inconstistent with

timing measurements giving Bdip = 3.2 · 1019
√
PṖ ≃ 2 · 1013G (Kaplan &

van Kerkwijk, 2009).

One of the XDINS which so far eluded optical identification is RBS1774.

Zane et al. (2008) reported the first detection of a likely optical counterpart

for RBS1774. Standardly, optical identifications of isolated neutron stars are

robustly confirmed either by the detection of optical pulsations or by the

measurement of a significant proper motion. In absence of such information

one can base the optical identification only on the positional coincidence

between the coordinates of the candidate counterpart and those of RBS1774,

as measured in the X-rays.

To make these models work, it has been postulated that the star has a

condensed-matter surface. However, condensation of surface matter requires

very specific conditions to be fulfilled (Lai & Salpeter, 1997; Lai, 2001). Even

if these conditions are satisfied, the formation of a non-uniform distribution

of the surface temperature is more likely artificial and needs to be examined

by convincing theory.

In the present chapter we explain the observed X-ray spectra of two

’XDINS’ (RX J1856.5-3754 and RBS1774) based on our plasma emission

model (Chkheidze & Machabeli, 2007; Chkheidze, 2011). This model suggests

that the emission from these object is generated by a synchrotron mechanism,

switched on as the result of acquirement of pitch angles by relativistic elec-

trons during the quasi-linear stage of the cyclotron instability. The model

gives successful fits for broadband spectra, without facing problems typical
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of the thermal radiation models. Considering the case of a nearly aligned

rotator, it was predicted that the source should have pulsated with a period

P ∼ 1 s (Chkheidze & Machabeli, 2007). However, subsequent XMM-Newton

observations of RXJ1856 discovered that its X-ray emission pulsates with a

period Pobs = 7.055 s (Tiengo & Mereghetti, 2007). This has been explained

in the framework of the drift wave driven model (Chkheidze & Lomiashvili,

2008). In particular, the real spin period of the pulsar might differ from the

observable one, as a consequence of the existence of very low frequency drift

waves in the region of generation of the pulsar emission. These waves are

not directly observable but result in a periodic change of curvature of the

magnetic field lines and, hence, a periodic change of the emission direction

with a period of the drift waves assumed to be equal to the observable period

(Lomiashvili et al., 2006).

4.1 X-ray spectral analysis

For the primary beam electrons with the Lorentz factor γb ∼ 107 the emitted

photon energy ϵc ∼ 0.1keV (Eq. (3.26)) comes in the energy domain of

the observed X-ray emission of RXJ1856 and RBS1774. Thus, we suppose

that the measured X-ray spectrum is the result of the synchrotron emission

of primary beam electrons (the resonance occurs on the right slope of the

distribution function of beam electrons (see Fig. 2.1)), switched on as the

result of acquirement of pitch angles by particles during the quasi-linear stage

of the cyclotron instability.

Here we assume that the initial energy distribution in the beam has a

Gaussian shape

fb0 =
nb√
πγT

exp

[
−(γ − γb)

2

γ2T

]
, (4.1)

where γT ≃ 10 - is the half width of the distribution function and nb is the

density of primary beam electrons. Since γT ≪ γb, this distribution is very

close to δ-function. Consequently, the electron distribution can be taken as

monoenergetic.
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In this case from Eq. (3.37) we get the following expression for the energy

density of the waves

|Ek|2 ∝ p∥. (4.2)

Using expressions (3.29), (3.40) and (4.2) in place of integral (3.41) we will

get

Fϵ ∝ ϵ−0.3

∫
x0.3

[∫ ∞

x

K5/3(z)dz

]
dx. (4.3)

The energy of the beam electrons vary in a small interval (γT ≪ γb ∼ 10). In

this case the integral (4.3) can be approximately expressed by the following

function

Fϵ ∝ ϵ0.3exp(−ϵ/ϵm). (4.4)

A spectral analysis was performed with XSPEC V12.3.0. We used the

model spectrum (Eq. (4.4)) absorbed by cold interstellar matter for fitting

the data. The observed X-ray spectrum of RXJ1856 was extracted from

CHANDRA LETGS instrument and the spectral analysis was limited to en-

ergies between 0.15 and 0.85 keV. The resulting χ2 = 1.00 for 970 degrees of

freedom and the amount of interstellar matter nH = (1.20±0.03)×1020cm−2

(see Fig. 4.1). The fitting results are listed in Table 4.1.

For RBS1774 we performed the spectral analysis by fitting the combined

data extracted of the three EPIC X-ray cameras of the XMM-Newton Tele-

scope (the spectral analysis was limited to energies between 0.2 and 1.5 keV).

The resulting χ2 = 1.63 for 311 degrees of freedom and the amount of inter-

stellar matter nH = (3.36±0.2)×1020cm−2, which appears to be close to the

total Galactic absorption in the source direction (nH = 5 ·1020cm−2 Dickey &

Lockman (1990)). The spectral feature at ∼ 0.7keV that is mostly described

as an absorption edge or line (Zane et al., 2005; Schwope et al., 2009) is also

evident in our case from inspection of Fig. 4.2.
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Figure 4.1: The Chandra LETGS X-ray spectrum of RXJ1856, fitted with the model.

Table 4.1: The model parameters of RXJ1856 for fit to Chandra LETGS spectrum in the
energy interval 0.15− 0.85 keV. (The fitting results with a pure blackbody model absorbed
by cold interstellar matter are from Burwitz et al. (2003))

Model nH ϵ−1
m kT∞

bb χ2(dof)
(1020cm−2) (eV)

plasma 1.20+0.03
−0.03 11.54± 0.78 1.00(970)

bbody 0.95+0.03
−0.03 63.5± 0.2 1.20(1145)
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Figure 4.2: EPIC-pn and EPIC-MOS spectra of RBS1774, fitted with a model.
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4.2 Possible nature of the spectral feature in the X-ray

emission of RBS1774

During the farther motion in the pulsar magnetosphere, the X-ray emission

of RBS1774 that is generated on the light cylinder lengthscales, might come

in the cyclotron damping range (Khechinashvili & Melikidze, 1997):

ω − k∥V∥ − kxux −
ωB
γr

= 0. (4.5)

The condition for the development of the cyclotron instability may be easily

derived for the small angles of propagation with respect to the magnetic field.

Representing the dispersion of the waves as

ω = kc, (4.6)

and neglecting the drift term, the resonance condition (4.5) may then be

written as
1

2γ2r
+
α2

2
=

ωB
ωγr

, (4.7)

where α ≈ ψ is the angle between the wave vector and the magnetic field.

Taking into account that ψ2
0 ≫ 1/2γ2b one finds from Eq. (4.7) the frequency

of damped waves

ωd ≈
2ωB
γrψ2

. (4.8)

If we assume that damping happens on the left slope of the distribution

function of primary beam electrons (see Fig. 2.1), then the estimation shows

that on the light cylinder lengthscales the photon energy of damped waves

will be ϵd = (h/2π)ωd ≃ 0.7keV. Taking into account the shape of the dis-

tribution function of beam electrons, we interpret the large residuals around

∼ 0.7keV (see Fig. 4.2) as an absorption edge. Including an absorption edge

improves the fit leading to a reduced χ2 = 1.50 (for 309 degrees of freedom).

The best-fitting energy of the edge is Eedge = 0.679±0.013keV, and the opti-

cal depth is τedge = 0.20±0.03 (see parameters in Tab. 4.2). However, adding

an absorption edge to the model spectrum does not produce a statistically

significant improvement of the fitting (see Fig. 4.3). According to Schwope
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Figure 4.3: EPIC-pn and EPIC-MOS spectra of RBS1774 fitted with a model, including an
absorption edge at ∼ 0.7keV.

43



Table 4.2: The model parameters of RBS1774 for combined fits to EPIC-pn and EPIC-
MOS in the energy interval 0.2− 1.5 keV. (The fitting results with a pure blackbody model
absorbed by cold interstellar matter are from Schwope et al. (2009))

Model nH ϵ−1
m kT∞

bb Eedge/line σline τedge/line χ2(dof)
(1020cm−2) (eV) (eV) (eV) (eV)

plasma 3.36+0.20
−0.20 7.0± 0.2 1.63(311)

plasma*edge 3.30+0.12
−0.12 6.9± 0.1 679+13

−13 0.20+0.03
−0.03 1.50(309)

bbody 1.85+0.17
−0.17 103.5± 0.8 1.81(311)

bbody*gabs 1.84+0.20
−0.17 105.1± 0.9 731+8

−13 27+16
−4 6.5+1.2

−1.0 1.50(308)

et al. (2009) if one uses the RGS X-ray spectra of RBS1774 in place of EPIC

spectra, the resulting χ2 is changed just marginally when a Gaussian absorp-

tion line is included at ∼ 0.7keV. Thus, we conclude that the nature of the

feature at 0.7keV is uncertain and might be related to calibration uncertain-

ties of the CCDs and the RGS at those very soft X-ray energies. The same

can be told about a feature at ∼ 0.3keV (the large residuals around 0.3keV

are evident from inspection of Figs. 4.2 - 4.3). A feature of possible similar

nature was detected in EPIC-pn spectra of the much brighter prototypical

object RXJ1856 and classified as remaining calibration problem by Haberl

(2007). Consequently, more data are necessary to finally prove or disprove

the existence of those features.

4.3 Optical emission

The frequency of the original waves, excited during the cyclotron resonance

can be estimated from Eq. (2.16) as follows

ν ≈ 2π
ωB
δγb

∼ 1014Hz. (4.9)

As we can see the frequency of cyclotron modes comes in the same domain

as the measured optical emission of RXJ1856 and RBS1774 (Burwitz et al.,

2003; Zane et al., 2008; Schwope et al., 2009).
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4.4 The effectiveness of the cyclotron mechanism

For effective generation of waves it is essential that the time during which the

particles give energy to waves should be more than 1/Γc. Generated waves

propagate practically in straight lines, whereas the field line of the dipole

magnetic field deviates from its initial direction, and the angle α = k∥/kφ

grows. α is the angle between the wave line and the line of dipole magnetic

field. On the other hand, the resonance condition (2.3) imposes limitations

on α ≈ max{
√
δ, uxc } (Kazbegi et al., 1991b); i.e. particles can resonate with

the waves propagating in a limited range of angles. Obviously equation (2.3)

will be fulfilled before (Lyutikov et al., 1999b):

c

Γc
. αρ, (4.10)

where cΓ−1
c is the growth length and αρ the length of the wave-particle

interaction. For the beam particles from equation (4.10), it follows that

ρ & 3 · 109cm. As the cyclotron instability arises at distances r ∼ 109cm for

the beam electrons, this result means that the time of wave interaction with

the resonant particles is definitely enough for particles to acquire the pith-

angles, which automatically leads to the generation of synchrotron emission.

4.5 The recently discovered 7s pulsations of RXJ1856

Despite extensive searches, none of the previous analysis of the X-ray data

of RXJ1856 revealed any significant periodicity (Pons et al., 2002; Ransom

et al., 2002; Drake et al., 2002; Burwitz et al., 2003). Considering the case of

a nearly aligned rotator, by Chkheidze & Machabeli (2007) it was predicted

that the source should have pulsated with a period of ∼ 1 s. However,

the posterior XMM-Newton observation of RXJ1856 discovered that its X-

ray emission pulsates with a period of 7.055 s (Tiengo & Mereghetti, 2007).

The latter fact has been explained in the framework of drift wave driven

model (Chkheidze & Lomiashvili, 2008). In particular, the real spin period

of the pulsar might differ from the observable one, as a consequence of the
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existence of very low frequency drift waves in the region of generation of the

pulsar emission. These waves are not directly observable but only result in

a periodical change of curvature of the magnetic field lines and, hence, a

periodical change of the emission direction with a period of the drift waves

assumed to be equal to the observable period (Lomiashvili et al., 2006).

4.5.1 Generation of drift waves

Under certain conditions the considered distribution function will generate

various wave-modes. Particularly it has been shown (Kazbegi et al., 1991b,

1996) that very low frequency, nearly transverse drift waves can be excited.

They propagate across the magnetic field, so that the angle between k and

B is close to π/2. In other words, k⊥/kφ ≫ 1, where k⊥ = (k2r + k2φ)
1/2.

Assuming γ(ω/ωB) ≪ 1, (ui/c)
2 ≪ 1, kφ/kx ≪ 1 and kr −→ 0, we can

write the general dispersion equation of the drift waves in the following form

(Kazbegi et al., 1991a,b, 1996):(
1−

∑
i

ω2
i

ω

∫
u2i
Vφcω

1

ω − kφVφ − kxui

∂fi
∂p
dp−

k2φc
2

ω2

)
×

×

(
1 +

∑
i

ω2
i

ω

∫
Vφ/c

ω − kφVφ − kxui

∂fi
∂p
dp
k2φc

2

ω2

)
−

−

(
kxkφc

2

ω2
+
∑
i

ω2
i

ω

∫
Vφ/c

ω − kφVφ − kxui

∂fi
∂p
dp

)2

= 0, (4.11)

where i denotes the sort of particles (electrons or positrons) and ω2
i = 4πnie

2/m,

fi is the distribution function and p is the momentum of the plasma particles.

Let us assume that

ω = kφVφ + kxub + iΓdr, (4.12)

where ub is the drift velocity of the beam particles (see equation (2.2)). In

the approximation kφVφ ≪ kxub and k
2
x ≪ ω2

p/γ
3
pc

2, the imaginary part can
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be written as:

Γdr = Imω ≈
(
nb
np

)1/2
(
γ3p
γb

)1/2

kxub. (4.13)

According to equation (4.12), the frequency of a drift wave can be written

as

ωdr = Reω = kφVφ + kxub ≈ kxub. (4.14)

Drift waves propagate across the magnetic field and encircle the region

of the open field lines of the pulsar magnetosphere. They draw energy from

the longitudinal motion of the beam particles, as in the case of the ordi-

nary Cherenkov wave-particle interaction. However, they are excited only if

kxub ̸= 0, i.e., in the presence of drift motion of the beam particles. Note that

these low-frequency waves are nearly transverse, with the electric vector be-

ing directed almost along the local magnetic field. Let us note that although

kφVφ ≪ kxub for the drift waves, there still exists a nonzero kφ. It appears

that growth rate (Eq. (4.13)) is rather small. However, the drift waves prop-

agate nearly transversely to the magnetic field, encircling the magnetosphere,

and stay in the resonance region for a substantial period of time. Although

the particles give a small fraction of their energy to the waves and then leave

the interaction region, they are continuously replaced by the new particles en-

tering this region. The waves leave the resonance region considerably slower

than the particles. Hence, there is no sufficient time for the inverse action

of the waves on the particles. The accumulation of energy in the waves oc-

curs without quasi-linear saturation. The amplitude of the waves grows until

the nonlinear processes redistribute the energy over the spectrum. As was

demonstrated by Kazbegi et al. (1991b), the strongest nonlinear process in

this case is the induced scattering of waves on plasma particles. Therefore,

the growth of the drift wave amplitude continues until the decrement of the

nonlinear waves ΓNL becomes equal to the linear decrement Γdr. As a result,

one obtains quasi-regular configurations of drift waves. Generally, the non-

linear scattering pumps the wave energy into the long-wavelength domain of

47



the spectrum.

λmax ≈ rLC =
cP

2π
. (4.15)

Here rLC is the radius of the light cylinder.

According to equations (4.14), (4.15) and (2.2), the period of the drift

waves can be written as:

Pdr =
e

4π2mc

BP 2

γ
, (4.16)

It appears that the period of the drift waves can vary in a broad range. It

is possible to determine the relationship between Pdr, the derivative and the

rate of slowing down of the neutron star from equation (4.16)

˙Pdr =
eB

2π2mcγ
PṖ . (4.17)

This relation is kept during the entire life of the pulsar, until it stops emitting.

4.5.2 Change of the field line curvature and the emission direction

by the drift waves

Let us assume that a drift wave with the dispersion defined by equation

(4.11) is excited at some place in the pulsar magnetosphere. It follows from

the Maxwell equations that Br = Eφ(kxc/ω0), hence Br ≫ Eφ for such a

wave. Therefore, excitation of a drift wave causes particular growth of the

r-component of the local magnetic field.

The field line curvature ρ ≡ 1/r is defined in a Cartesian frame of coordi-

nates as

ρ =

[
1 +

(
dy

dx

)2
]−3/2

d2y

dx2
, (4.18)

where dy/dx = By/Bx. Using (∇B) = 0 and rewriting equation (4.18) in the

cylindrical coordinates we obtain

ρ =
1

r

Bφ

B
− 1

r

1

B

B2
φ

B2

∂Br

∂φ
. (4.19)

Here B = (B2
φ + B2

r )
1/2 ≈ Bφ[1 + (B2

r/2B
2
φ)]. Assuming that kφr ≫ 1 we
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obtain from equation (4.19)

ρ =
1

r

(
1− kφr

Br

Bφ

)
. (4.20)

From equation (4.20) it is clear that even a small change of Br causes sig-

nificant change of ρ. Indeed, based on the dimensional estimations, we can

write kφr ≫ 2π, and variation of the field line curvature can be estimated as

∆ρ

ρ
≈ kφr

∆Br

Bφ
, (4.21)

It follows that even a drift wave with a modest amplitudeBr ∼ ∆Br ∼ 0.01Bφ

alters the field line curvature substantially ∆ρ/ρ ∼ 0.1.

Since the pulsar emission propagates along the local magnetic field lines,

curvature variation causes change of the emission direction, with the period

of the drift waves.

4.5.3 The model

There is a direct correspondence between the observable intensity and α (the

angle between the line of sight of an observer and the magnetic axis, see

Fig. 4.4). The maximum of intensity corresponds to the minimum of α. The

period of the pulsar is then the time interval between neighboring maxima

of the observable intensity i.e. minima of α. According to this fact, we can

say that the observable period depends on the time behavior of α and as the

observable period appears below it might differ from the ’real’ spin period

of the pulsar. From pulsar geometry it follows that α can be expressed as

(Lomiashvili et al., 2006):

cosα = k⃗µ⃗, (4.22)

where k⃗ and µ⃗ are unit guide vectors of observers and magnetic axes, respec-

tively. In the spherical coordinate system (r, φ, θ) combined with the plane
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Figure 4.4: Ω⃗ is the rotation axis, µ⃗ - the magnetic-moment axis, k⃗ - the observer’s axis
and E⃗ is the electric field vector of the radiation. µ⃗⊥ and Ω⃗⊥ are the projections of the
corresponding vectors on the plane of sky, χ̃ is the position angle.
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of the pulsar rotation, these vectors can be expressed as:

k⃗ = (1, 0, δ),

µ⃗ = (1,Ωt, β), (4.23)

where Ω = 2π/P is the angular velocity of the pulsar, ωdr = 2π/Pdr is the

cyclic frequency of the drift wave, δ is the angle between the rotation and the

observer’s axis, β is the angle between the rotation and magnetic-moment

axis (see Fig. 4.4).

From equations (4.22) and (4.23), it follows that:

α = arccos(sin δ sin β cosΩt+ cos δ cos β). (4.24)

In the absence of the drift wave β = β0 = const and consequently the period

of α equals 2π/Ω.

According to equation (4.21), in the presence of the drift wave, the frac-

tional variation ∆ρ/ρ is proportional to the magnetic field of the wave Br,

which is periodically changing. So β = β(t) is harmonically oscillating about

β0 with an amplitude ∆β = ∆ρ/ρ and rate ωdr = 2π/Pdr. Thus, we can write

that

β = β0 +∆β sin(ωdrt+ φ). (4.25)

According to equations (4.24) and (4.25) we obtain

α = arccos[sin δ sin(β0 +∆β sin(ωdrt+ φ)) cosΩt+

+cos δ cos(β0 +∆β sin(ωdrt+ φ))], (4.26)

If the angle between the rotation and emission axes is very small i.e. δ <<

1, then the period of α equals Pdr = 2π/ωdr. In this case the observable

period Pobs does not represent the real spin period of the pulsar, but equals

the period of the drift wave, which we assume to be 7.055 s. When the real

spin period of this object has been estimated by Chkheidze & Machabeli

(2007) to be P ≈ 1s.

Hence, for some values of parameters β, ∆β, δ, φ and ϑ (here ϑ is the
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opening angle of the X-ray emission cone) it is possible to explain the observed

7 s pulsations of RXJ1856. The observations detect continuous radiation

meaning that the following condition: α(t) ≤ ϑ, has to be fulfilled at any

moment of time. The posterior results depend on the angular size of the X-ray

emission cone. For the primary beam electrons (which generate the observed

X-ray emission), the distribution function by their pitch angles has the form

expressed by equation f⊥(ψ) ∝ e−Aψ
4

(see Eq. (2.42), where ψ = p⊥/p∥) and

A ≃ 1010 (the mean value of the pitch angle estimates as ψ0 ≃ 10−3). The

greatest possible value of the pitch angle, acquired by the beam of electrons

at the quasi-linear stage of the cyclotron instability, is of the order of ψ0.

The electron emits in the direction of motion through a small cone with the

opening angle 1/γ, which for the primary beam electrons is ≃ 10−7 and the

magnetic field lines are nearly parallel and straight in the emitting region.

Thus, we conclude that the angular size of the emission cone is equal to the

maximal possible value of the pitch angle of the emitting electrons. It means

that the opening angle of the X-ray emission cone should be ϑ ≃ 10−3.

The emission intensity undergoes periodic variations due to the star’s ro-

tation. The emission intensity in the given direction is defined as follows

(Ginzburg, 1981):

I(ν) =
3e3

2π

∫
B

(
ν

νc

)2

(1 + χ2γ2)γf(γ, ψ) sinα×

×
[
K2

2/3(gν) + χ2γ2K2
1/3(gν)

]
dχdγ. (4.27)

Its time dependence can be approximately expressed in the following form:

I(t) ∝ sinαe−A(α+χ)
4

. (4.28)

Here the expression ψ = α + χ has been taken into account (χ is the angle

between the wave vector and the velocity vector of the emitting electron, see

Fig. 4.5). The angle α ∼ 10−3, while the maximal value of the angle χ is

∼ 10−7, consequently we can approximately write

I(t) ∝ sinαe−Aα
4

. (4.29)
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Figure 4.5: k is the emission direction, B - the magnetic field line, v and v′ - are the
electrons’ velocities.

The fitting is done with the observational data, using this expression for

the emission intensity. The simulated light curves for RXJ1856 are presented

in Fig. 4.6, with two different values for the angle δ. As we can see the

value of the pulsed fraction of only ∼ 1.2% is well expressed and the data

is well fitted. The change of δ causes the appearance of additional peaks

correspondent to the pulsations with a real spin period approximately equaled

to 1 s. Therefore, we expect that the detection of the ’real’ spin period of

RXJ1856 can be achieved with observations of higher resolution. In Fig. 4.7

the change of α in time is presented, as we can see the condition α(t) ≤ 10−3

is fulfilled at any moment of time. The values for the angular parameters

obtained from fitting are presented in Table 4.3.

Assuming the star is spinning down by magnetic dipole radiation, one

can use the spin-down rate to infer a magnetic field strength. The dipolar

magnetic field strength at the neutron star surface can be written as:

B0 ≃ 3.2× 1019
√
ṖP (4.30)

According to van Kerkwijk & Kaplan (2008) the observed value of the period

and period derivative are Pobs ≈ 7s, Ṗobs ≃ 3 · 1014ss−1. These measured

quantities represent the period and period derivative of the drift waves, when
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Figure 4.6: The simulated light curves of RX J1856.5-3754 fitted with PN and MOS obser-
vations. The solid and the dotted lines correspond to δ ∼ 10−6 and δ ∼ 10−5, respectively.

54



0 2 4 6 8 10 12 14

1.9

1.95

2

2.05

2.1

2.15
x 10

−3

t(sec)

α(
ra

d)

Figure 4.7: Oscillating behaviour of α with time. The solid and the dotted lines correspond
to δ ∼ 10−6 and δ ∼ 10−5, respectively.

Table 4.3: The values of angular parameters for RX J1856.5-3754.

Pobs(s) P (s) ∆β β0 δ ϑ

7.055 1.5 10−4 2 · 10−3 2 · 10−5 10−3

the real spin period and its derivative can be obtained from equations (4.16)

and (4.17). As we have already estimated the real spin period is ≈ 1s, thus,

the value for the real spin period derivative will be Ṗ ≃ 2 · 10−15ss−1. Using

the latter values one can get the magnetic field strength at the pulsar surface

B0 ≃ 1012G.

4.6 The polarization properties of RXJ1856

We are not about to reject the existing thermal radiation models for RXJ1856

and suppose that the most reliable argument for revealing the real emission

nature of this source will be its study with polarization instruments. There-

fore in this section the polarization properties of RXJ1856 are investigated,

in the framework of the plasma emission model (see Chkheidze (2009)).

55



4.6.1 Emission polarization

Let us consider the emission polarization of RXJ1856. For this reason, we

have to find the Stokes parameters, which, in our case, are defined as follows

(Ginzburg, 1981):

I(ν) =
3e3

2π

∫
B

(
ν

νc

)2

(1 + χ2γ2)γf(γ, ψ) sinα×

×
[
K2

2/3(gν) + χ2γ2K2
1/3(gν)

]
dχdγ, (4.31)

Q(ν) =
3e3

2π

∫
B

(
ν

νc

)2

(1 + χ2γ2)γ2f(γ, ψ) sinα cos 2χ̃×

×
[
K2

2/3(gν)− χ2γ2K2
1/3(gν)

]
dχdγ, (4.32)

U(ν) =
3e3

2π

∫
B

(
ν

νc

)2

(1 + χ2γ2)γ2f(γ, ψ) sinα sin 2χ̃×

×
[
K2

2/3(gν)− χ2γ2K2
1/3(gν)

]
dχdγ, (4.33)

V (ν) =
3e3

π

∫
B

(
ν

νc

)2

(1 + χ2γ2)3/2γ2χf(γ, ψ) sinα×

×K1/3(gν)K2/3(gν)dχdγ, (4.34)

here the angle χ̃ defines the direction of maximum intensity of the polarized

component on the plane of sky.

Synchrotron emission of a single electron is strongly beamed along the

direction of motion into an angle of order 1/γ. Hence, in the given direction,

the observer will detect radiation of the electrons with velocities filling up

the cone with 1/γ in angular size and with the major axis coincided with the

line of sight of an observer (see Fig. 4.5). Therefore, at the given moment of

time, the observer receives emission of the electrons having the pitch-angles

from the interval ψ = α + χ ⊂ [α − 1/γ, α + 1/γ] (it should be mentioned
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Figure 4.8: Point B corresponds to the magnetic field line and point A - to the observer’s
line of sight.

that the angle χ is considered to be positive if ψ > α and to be negative,

otherwise). The Stokes parameter V is an odd function of variable χ, there-

fore, its integration over symmetric interval yields zero. Let us consider the

top view of Fig. 4.5 (see Fig. 4.8). The larger circle represents a cross sec-

tion of the cone. The lateral surface of this cone is described by the electron

velocity vector moving on a spiral along the magnetic field line. The circle

with smaller radius corresponds to the cone combined by the velocity vectors

giving the significant radiation in the observer’s direction. Its angular size

estimates as 1/γ. The area of the smaller circle is striped in two different

ways: area a corresponds to the electrons which have positive values of angle

χ, while area b corresponds to those having negative values of angle χ. As

these areas are not equal to each other, one would expect the nonzero value of

V . But bearing in mind that the bigger circle is large enough in comparison

with the smaller one (the solid angles of corresponding cones are of the order

of 10−3 and 10−7 for the beam electrons), one can easily assume that a ≈ b.

But only symmetry of integration bounds is not enough condition to have

a zero circular polarization. Also the distribution function by pitch angles,

containing the variable χ, should change very slowly within the small interval

∼ 1/γ. The estimations show that the latter condition is well fulfilled. Thus,

we conclude that the emission of this source is not circularly polarized.
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Now we can calculate the degree for the linear polarization, which writes

as (Ginzburg, 1981):

Πl =

√
Q2 + U 2

I
. (4.35)

The degree of linear polarization, corresponding to the energy interval (0.15−
0.85)keV of the observed X-ray spectrum can be calculated using equations

(2.42), (4.1), (4.31), (4.32) and (4.33), we get Πl ≈ (84− 79)%.

4.6.2 Position angle

It is very important to know the behaviour of the PA (Position angle) of linear

polarization of the X-ray emission through the pulse. If we use spherical

coordinate system (r, φ, θ) (see Fig. 4.4), then we write:

k⃗ = (1, 0, δ),

µ⃗ = (1,Ωt, β),

Ω⃗ = (1, 0, 0). (4.36)

Here k⃗, µ⃗ and Ω⃗ are unit guide vectors of observers, magnetic and rotation

axes, respectively. As we know, the PA is an angle between the electric field

of radiation and the projected spin axis on the plane of sky. From Fig. 4.9,

it is easy to find the expression for PA, which has the following form:

χ̃ =
π

2
− arccos

(
cos β − cosα cos δ

sinα sin δ

)
, (4.37)

where α is defined from expression (4.26). If we take for the value of the real

spin period P = 1.5s, we can see that the PA rotates by 360◦ for a few times

within the observable period, as the star makes more than one rotation in

7.055s (see Fig. 4.9).
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Figure 4.9: The behaviour of the position angle of the linearly polarized X-ray emission
within one observable pulse.

59



Chapter 5

The HE energy pulsed emission of

PSR B0531+21

The recent observations of the MAGIC Cherenkov telescope (Aliu et al.,

2008), reveal several characteristic features of the HE emission of the Crab

pulsar. In particular, pulsed γ-rays above 25GeV is detected showing a rela-

tively HE cutoff, which indicates that emission happens far out in the mag-

netosphere (Aliu et al., 2008). The pulsar emission model that underlies

our work, provides the generation of the observed emission in the outer part

of the pulsar magnetosphere (the region near the light cylinder). As we

have already outlined in the electron-positron plasma of a pulsar magneto-

sphere the low frequency cyclotron modes (which come in the radio domain

(Chkheidze et al., 2010)), on the quasi-linear evolution stage create conditions

for generation of the HE synchrotron emission. A special interest deserves

the coincidence of signals from different frequency bands ranging from radio

to X-rays (Manchester & Taylor, 1980). Investigations of last decade have

shown that the aforementioned coincidence takes places in the HE domain

(0.01MeV-25GeV) as well (Aliu et al., 2008). In the framework of the present

work, generation of low and high frequency waves is a simultaneous process

and it takes place in one location of the magnetosphere, which explains the

observed pulse phase coincidence of the low and HE signals. Consequently,

we suppose that generation of phase-aligned signals from different frequency
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bands is a simultaneous process and it takes place in one location of the pul-

sar magnetosphere. This in turn, restricts possibility of choice of radiation

mechanisms and as recently has been shown by Machabeli & Osmanov (2009,

2010), the ICS and the curvature radiation should be excluded, which are not

localized.

5.1 Synchrotron HE spectrum of the Crab pulsar

It is well known that close to the pulsar surface due to very strong magnetic

fields, magnetospheric particles emit efficiently and the corresponding cooling

timescale is short compared to the typical kinematic timescales of particles.

Therefore, transversal energy loss becomes extremely efficient, consequently

electrons and protons loose their perpendicular momenta and very rapidly

transit to their ground Landau states and the distribution function becomes

one dimensional. This means that one needs a certain mechanism, leading

to the creation of the pith angles restoring the synchrotron radiation. The

main mechanism of wave generation in plasmas of the pulsar magnetosphere

is the cyclotron instability (Kazbegi et al., 1992). During the quasi-linear

stage of the instability, a diffusion of particles arises along and across the

magnetic field lines. Therefore, the resonant electrons acquire transverse

momenta and, as a result start to radiate in the synchrotron regime. We

assume that the observed HE spectrum of the Crab pulsar is the result of

the synchrotron emission of the primary beam electrons. According to the

expression (3.26) the beam electrons should have γb ≃ 6 · 108 to radiate the

photons with ∼ 10GeV energy. This in turn implies that the gap models

providing the Lorentz factors ∼ 107, are not enough to explain the detected

pulsed emission. On the other hand, Aliu et al. (2008) confirmed that their

observations indicate that emission happens far out in the magnetosphere.

One of the real scenarios could be the centrifugal acceleration of electrons,

which takes place in co-rotating magnetospheres (Machabeli & Rogava, 1994;

Rogava et al., 2003; Osmanov et al., 2007). Another alternative mechanism

of acceleration could be a collapse (Artsimovich & Sagdeev, 1979; Zakharov,
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1972) of the centrifugally excited unstable Langmuir waves (Machabeli et al.,

2005) in the pulsar magnetosphere.

According to Aliu et al. (2008) the observed high energy pulsed emission

of the crab pulsar is best described by a power-law spectrum F (ϵ) ∝ ϵ−2.022

in the energy domain (0.01 − 5)GeV. At ϵ = 25GeV a measured flux is

several times lower, which requires a spectral cutoff somewhere between 5

and 25GeV.

We assume that the energy of the beam electrons vary between γmin ∼ 106

and γmax ∼ 108, in which case, we have (ϵ/ϵm)max ≪ 1 and (ϵ/ϵm)min ≫ 1.

Under such conditions the integral (3.41) can be approximately expressed by

the following function

Fϵ ∝ ϵ−
2−n
4−nexp

[
−
( ϵ
23

)1.6]
. (5.1)

When n = 6 (which means that the initial energy distribution of the beam

electrons f∥0 ∝ p−6
∥ ) the spectral index, β, of the synchrotron emission equals

2, and the flux Fϵ ∝ ϵ−2exp[−(ϵ/23)1.6]. As we can see our emission scenario

predicts the exponential cutoff, with the cutoff energy 23GeV.

The frequency of the original waves, excited during the cyclotron resonance

can be estimated from expression (2.16). Estimations show that for the beam

electrons with the Lorentz-factor from the interval γb ∼ 106−8, the radio

waves are excited. Consequently, we explain the coincidence of radio and

γ-ray signals.

As we see, the synchrotron emission can explain the observed HE radia-

tion, and as we have already seen, for this purpose the particles must have

very high Lorentz factors. On the other hand, these particles will inevitably

encounter soft photons, which in turn can also create the high energy radia-

tion via the ICS. But in this case the emission will not be localized contrary

to the observational evidence, indicating that for some reason the ICS is not

involved in the process of the detected emission. This particular problem

was considered in (Machabeli & Osmanov, 2010), where analyzing the ICS,

it has been demonstrated that for reasonable physical parameters even very

62



energetic electrons are unable to produce the photon energies of the order of

25GeV. The next section is dedicated to this particular problem.

5.2 Compton scaterring

It is well known that when a photon with energy ϵ encounters a relativistic

electron, under certain conditions photons might gain energy. The corre-

sponding frequency after scattering is given by (Rybicki & Lightman, 1979)

ω′ = ω
1− β cos θ

1− β cos θ′ + ~ω
γmc2 (1− cos θ′′)

, (5.2)

where ω is the frequency before scattering, β ≡ υ/c, θ = (P̂K), θ′ = ( ˆPK′),

θ′′ = ( ˆKK′). By K and K′ we denote the three momentum of the pho-

ton before and after scattering, respectively. The momentum of relativistic

electrons before scattering is denoted by P.

Since, according to the observational evidence, we observe the well local-

ized pulses of HE emission, therefore the angle, θ must be very small. On

the other hand, analyzing the excitation of oblique waves in a relativistic

electron-positron plasma one can argue that the pitch angle has to be ex-

tremely low (Volokitin, Krasnoselskikh & Machabeli , 1985). We will study

two principally different cases: (a) cos θ′ ≪ 1 and (b) cos θ′ ∼ 1. In the first

case we have

ω′ ≈ ω

2γ2
× 1

1 + ~ω
γmc2 (1− cos θ′′)

, (5.3)

where the following approximate relation, 1− β ≈ 1/2γ2 has been taken into

account, for β ∼ 1. From this expression we see that for all physical quantities

the frequency after the scattering is less than that before the scattering and

therefore, there is no possibility of increasing ω to the high energy band.

By considering the second limit, Eq. (5.2) reduces to

ω′ ≈ ω
1

1 + ~ω
γmc2 (1− cos θ′′)

, (5.4)

which, as in the previous case, leads to the similar result, ω′ < ω.
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This investigation shows that the ICS cannot provide the HE radiation

from the Crab pulsar detected by MAGIC (Aliu et al., 2008).

5.3 Curvature radiation

Since particles are moving along the curved magnetic field lines continuously,

they will emit the curvature radiation. On the other hand, in Eq. (3.27) we

have neglected a term corresponding to the curvature emission. This means

that the following ratio

η ≡ ϵcurv
ϵsyn

, (5.5)

where (Ruderman & Sutherland, 1975)

ϵcurv =
3~
2
γ3b
c

ρ
, (5.6)

must be less than one. By applying Eqs. (3.26), (5.5) and (5.6), one can

show that for typical magnetospheric parameters of the Crab pulsar close to

the light cylinder, the aforementioned ratio is negligible only if the curvature

radius exceeds the light cylinder radius, Rlc, approximately by three orders

of magnitude.

Generally speaking, since no contribution in emission comes from the

closed magnetic field lines, we consider the open ones. On the other hand,

in the dipolar field the region of almost straight field lines is just a tiny frac-

tion of the emission area, leading to a negligible value of the high energy

luminosity.

If the beam component particles move along curved field lines, they expe-

rience the so-called curvature drift with the velocity:

ub =
γb0υ

2
∥

ωBb
ρ
, (5.7)

where ωBb
= eB0/mc, B0 is the background magnetic field induction. This

velocity will eventually create the drift current, Jdr = enbub which in turn,
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via the Maxwell equation

(▽×B)x =
4π

c
Jdr, (5.8)

can create the toroidal magnetic field (by x we denote a direction of the

drift current. See Fig. 1 in Appendix). This current is evidently less than

the Goldreich-Julian (GJ) current JGJ = enbc, since ub ≪ c. But on the

other hand, the GJ current creates the corresponding magnetic field, Br ≈
4πJGJRn/c, where Rn ≈ B(R)/B′(R) = R/3 (B′ ≡ dB/dR) is the length

scale of the spatial inhomogeneity of the magnetic field. If we assume a

dipolar configuration, then, by taking the value of the GJ density, nb ≈
ΩB/(2πec) into account, one can show that the toroidal magnetic field equals

B(2R/3Rlc). Inside the light cylinder (R < Rlc), this value is less than the

background magnetic field-B and therefore such a toroidal magnetic field will

be unable to rectify the twisted magnetic field lines. This implies that the

curvature drift current, which is less than that of the GJ, cannot contribute

to the process of rectifying the field lines. However, in spite of that the drift

current is not the source of the toroidal component, Br, it is a trigger mech-

anism for generating the perturbed current, J1 = e(n0bυ
1
bx
+ n1bub) responsible

for the creation of Br (see Eq. (10)), where by upper script ’1’ we denote

the perturbed quantities. The source of the instability of current and the

resulting magnetic field is the pulsars rotational energy and the process is

achieved via the parametrically excited curvature drift waves. The corre-

sponding increment of the curvature drift instability (CDI) can be presented

by (see Appendix, for more details see (Osmanov et al., 2009a,b)):

Γ ≈
(
−3

2

ω2
b

γb0

kxub
kθc

)1/2 ∣∣∣∣J0(kxub4Ω

)
J0

(
kθc

Ω

)∣∣∣∣ , (5.9)

where ωb is the beam component plasma frequency and γb0 - the Lorentz

factor in an unperturbed state. kx and kθ are the wave vectors components

and Ω is the angular velocity of rotation.

By considering the typical magnetospheric parameters for the Crab pulsar

close to the light cylinder, P = 0.033s, γb0 = 108 and examining the per-
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turbation lengthscale λ ≈ 108cm (Osmanov et al., 2009a), one can see that

the increment is of the order of 1s−1. Comparing this value with the Crab

pulsars slowdown rate, 4.2 · 10−13s−1, we see that the instability growth rate

exceeds by many orders the magnitude of slowdown rate, indicating that the

mentioned instability is extremely efficient.

It is worth noting that we have three types of the open field lines: (a)

curved field lines which pass ahead of the rotation; (b) a tiny fraction of

almost straight field lines and (c) curved field lines, lagging behind the rota-

tion.

If the initial perturbation of the toroidal magnetic field satisfies the condi-

tion Br > 0, then such a perturbation will rectify all field lines which initially

pass ahead of the rotation (suppose the clockwise rotation of the system) and

will twist even more the magnetic field lines, which initially lag behind the

rotation. In the case, Br < 0, the situation is opposite: the field lines initially

lagging behind the rotation will be rectified. At this stage the curvature be-

comes infinity and as we see from Eq. (5.7), the drift velocity tends to zero,

saturating (killing) the instability.

The investigation shows that, the CDI provides necessary conditions for

an efficient mechanism of rectifying the field lines, leading to the negligible

role of the curvature radiation.

66



Chapter 6

Discussion and Conclusions

In the present work the pulsar emission model is presented, which is based on

well developed theory of pulsars. It is supposed that the relatively high energy

pulsar emission is generated by the synchrotron mechanism. The distribution

function of relativistic particles is one dimensional at the pulsar surface, but

plasma with an anisotropic distribution function is unstable which can lead to

wave excitation. The main mechanism of wave generation in plasmas of the

pulsar magnetosphere is the cyclotron instability. During the quasi-linear

stage of the instability, a diffusion of particles arises along and across the

magnetic field lines. Therefore, plasma particles acquire transverse momenta

and, as a result, the synchrotron mechanism is switched on.

In the framework of the model we explain the observational properties of

three individual pulsars. In particular, the HE spectrum of the Crab pulsar

is assumed to be the result of the synchrotron emission of the beam electrons,

which start to radiate near the light cylinder, due to the cyclotron instability.

If the resonant particles are the primary beam electrons with γb ≃ 6 ·108 their
synchrotron emission comes in the HE domain (∼ 10GeV). We provide the

theoretical confirmation of the measured power-law spectrum (Fϵ ∝ ϵ−β with

β = 2) in the energy domain ϵ = 0.01GeV to 25Gev. Differently from the

standard theory of the synchrotron emission (Ginzburg, 1981), we take into

account the mechanism of creation of the pitch angles, and obtain a certain
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distribution function of the emitting particles from their perpendicular mo-

menta, which restricts the possible values of the pitch angles. The emission

comes from a region of the pulsar magnetosphere where the magnetic field

lines are practically straight and parallel to each other. But in the standard

theory of the synchrotron emission (Ginzburg, 1981), it is supposed that the

observed radiation is collected from a large spacial region in various parts

of which, the magnetic field is oriented randomly. Thus, it is supposed that

along the line of sight the magnetic field directions are chaotic and when find-

ing emission flux, Eq. (3.18) is averaged over all directions of the magnetic

field (which means integration over ψ varying from 0 to π). The measured

decrease of the flux at ϵ = 25GeV is also explained. Our theoretical spectrum

Fϵ ∝ ϵ−2exp[−(ϵ/23)1.6] yields the exponential cutoff, with the cutoff energy

23GeV.

One of the interesting observational feature of the Crab pulsar is that its

multiwavelength emission pulses from low-frequency radio waves up to hard

γ-rays (ϵ > 25GeV) are coincident in phase (Manchester & Taylor, 1980;

Aliu et al., 2008). Which implies that generation of these waves occurs in

the same place of the pulsar magnetosphere. The present model ensures the

simultaneous generation of the low and high frequency waves in the same

area of the magnetosphere. The frequency of the original waves, excited

during the cyclotron resonance is ω ≈ ωB/δγb. Estimations show that for

the beam electrons with the Lorentz-factor from the interval γb ∼ 106−8, the

radio waves are excited. Consequently, we explain the coincidence of radio

and γ-ray signals.

According to the generally accepted point of view, HE emission is produced

either by the Inverse Compton up-scattering or by the curvature radiation.

Although it is clear that the aforementioned processes cannot provide the

observationally evident coincidence of signals, since they do not have any

restriction on the spacial location of emission area. This particular problem

has been studied by Machabeli & Osmanov (2010). Considering the curvature

radiation, we have shown that the CDI (see Osmanov et al. (2008); Osmanov

et al. (2009b)) makes the magnetic field lines rectify very efficiently, leading to
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a negligible role of the curvature emission process in the observed HE domain.

By analyzing the ICS, we have found that for Crab pulsar’s magnetospheric

parameters even very energetic electrons are unable to produce the observed

photon energies.

It is generally accepted, that the X-ray spectra of RXJ1856 and RBS1774

are purely thermal and is best represented by a Planckian shape. A fit of

the Chandra LETGS X-ray spectrum of RXJ1856 with a blackbody model,

absorbed by cold interstellar matter gives χ2 = 1.2 (Burwitz et al., 2003).

And when the fitting is done with our model the resulting χ2 = 1.00 (see

the fitting results in Tab.4.1). For RBS1774 a fit with a pure blackbody

component absorbed by cold interstellar matter gives χ2 = 1.81 (Schwope

et al., 2009). Including a Gaussian absorption line at ∼ 0.7keV (as the

largest discrepansies between model and data are around 0.7keV) improves

the fit χ2 = 1.50 (parameters are listed in Tab.4.2). The fit with a model

spectrum absorbed by cold interstellar matter yields χ2 = 1.63, and including

an absorption edge improves the fit leading to a reduced χ2 = 1.50. The

best-fitting energy of the edge is Eedge = 0.679keV, and the optical depth

is τedge = 0.20. These objects are strongly believed to be the sources of

the pure thermal emission, as their X-ray spectra are best represented by

simple Planckian function and there is no sign of any non-thermal X-ray

power-law such as those seen in the spectra of most radio pulsars. But as

we see, our model gives the synchrotron spectral distribution (a power-law

with exponential cutoff) which represents the observational data as well as

the Planckian function. Thus, this argument is not enough to conclude that

these objects are purely thermal sources.

We suppose that the most reliable argument revealing the real emission

nature of RXJ1856 and RBS1774 will be the study of these object with

polarization instruments. In case of RXJ1856, if the emission of this source

has a thermal nature, then according to Ho (2007) (this model gives the best

match of the entire spectrum, among other thermal emission models) the X-

ray emission should be linearly polarized with the polarization degree equal

to 100%. The position angle should undergo small changes for the case of

69



(2◦, 30◦) and for the case of (30◦, 2◦) it should rotate by 360◦ in one observable

pulse (where these quantities are the possible angles between the rotation

and the magnetic pole axes and between the rotation and the observer’s

axes). But if the emission of this source is generated by the synchrotron

mechanism, it is expected that the X-ray emission will be linearly polarized

with the frequency dependent polarization degree, giving the values from a

few percent up to 84%.

The nature of the spectral feature detected in X-ray spectrum of RBS1774

is not fully clarified as yet. The most likely interpretation is that it is due

to proton cyclotron resonance, which implies ultrastrong magnetic field of

Bcyc ∼ 1014G (Zane et al., 2005; Rea et al., 2007). Although, the required

strong magnetic field is inconstistent with timing measurements giving Bdip =

3.2 · 1019
√
PṖ ≃ 2 · 1013G (Kaplan & van Kerkwijk, 2009). We suppose

that existence of the absorption feature in spectra of RBS1774 is caused by

wave damping at photon energies ∼ 0.7keV, which takes place near the light

cylinder. During the farther motion in the pulsar magnetosphere, the X-ray

emission of RBS1774 comes in the cyclotron damping range (see Eq. (5.5)).

If we assume that damping happens on the left slope of the distribution

function of primary beam electrons (see Fig. 2.1), then the photon energy of

damped waves will be ϵ0 = (h/2π)ω0 = (h/2π)2ωB/γbψ
2 ≃ 0.7keV. Taking

into account the shape of the distribution function of beam electrons, we

interpret the large residuals around ∼ 0.7keV (see Fig. 4.2) as an absorption

edge. Including an absorption edge improves the fit leading to a reduced χ2 =

1.50. The best-fitting energy of the edge is Eedge = 0.679keV, and the optical

depth is τedge = 0.20 (see Tab.4.2). However, adding an absorption edge to

the model spectrum does not produce a statistically significant improvement

of the fitting. According to Schwope et al. (2009) if one uses the RGS X-ray

spectra of RBS1774 in place of EPIC spectra, the resulting χ2 is changed just

marginally when a Gaussian absorption line is included at ∼ 0.7keV. Thus,

we conclude that the nature of the feature at 0.7keV is uncertain and might

be related to calibration uncertainties of the CCDs and the RGS at those

very soft X-ray energies. The same can be told about a feature at ∼ 0.3keV
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(the large residuals around 0.3keV are evident from inspection of Fig. 4.2 and

4.3). A feature of possible similar nature was detected in EPIC-pn spectra

of the much brighter prototypical object RXJ1856.4-3754 and classified as

remaining calibration problem by Haberl (2007). Consequently, more data

are necessary to finally prove or disprove the existence of those features.

The frequency of the original waves, excited during the cyclotron resonance

can be estimated from Eq. (2.16) as follows ν ≈ 2πωB/δγb ∼ 1014Hz. As

we can see the frequency of cyclotron modes comes in the same domain as

the measured optical emission of RBS1774 and RXJ1856 (Zane et al., 2008;

Schwope et al., 2009; Burwitz et al., 2003).

The effectiveness of the cyclotron mechanism has been estimated and it

appears to be quite efficient. For effective generation of waves it is essential

that the time during which the particles give energy to waves should be

more than 1/Γc. The optical waves propagate practically in straight lines,

whereas the dipolar magnetic field lines deviate from their initial direction,

and the angle α = k∥/kφ grows. On the other hand, the resonance condition

(2.16) imposes limitations on α i.e. particles can resonate with the waves

propagating in a limited range of angles. The estimations show that in our

case, the fulfillment of ρ & 3 · 109cm implies an effectiveness of the cyclotron

mechanism. As the instability develops at distances r ∼ 109cm, it follows

that the excited waves lie in the resonant region long enough for particles to

acquire pitch angles and to generate the observed radiation.

The recently discovered 7s pulsations of the X-ray emission of RXJ1856

has been explained in the framework of the drift wave driven model. The

main feature of this model is that the spin period of the pulsar might differ

from the observable period (for RXJ1856 the real spin period is estimated

to be ∼ 1s), as a consequence of the existence of very low frequency drift

waves in the region of generation of the pulsar emission. These particular

waves are not detected but only result in a periodic change of curvature of

the magnetic field lines, which in turn cause the change of observed radiation

with a period of the drift wave.

The only test to find out if the observed pulse period is a ’real’ spin period
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or a period of the drift wave is to observe the behaviour of the position angle.

The position angle should rotate by 360◦ within one ’real’ pulse supposed to

be of the order of 1 s. It should undergo full circular rotation several times

within the observable period of 7.055s.

72



Appendix

Curvature drift instability

In this section we study the process of straightening the magnetic field lines

out due to the parametrically excited CDI (this particular problem was con-

sidered in Machabeli & Osmanov (2010)). This instability is called paramet-

ric, because an external force - centrifugal force, plays a role of a parameter,

that changes in time and creates the instability. Generally speaking, the pres-

ence of an external varying parameter generates the plasma instability. The

mechanism of energy pumping process from the external alternating electric

field into the electron-ion plasma is quite well investigated in (Silin, 1973;

Galeev & Sagdeev, 1973; Max, 1973). Instead of considering the altering

electric field, one can examine the centrifugal force as a varying parameter

(Machabeli et al., 2005).

We start our consideration by supposing that the magnetic field lines are

almost straight with very small nonzero curvature (see Fig. 1). In this context

we examine the field lines that are open, and thus have the curvature radius

exceeding the light cylinder one, maximum by one order. Therefore, dynamics

of particles, governing the overall picture of the CDI, can be studied, assuming

that field lines are almost straight. It is well known that the dynamics of

plasma particles moving along the straight co-rotating magnetic field lines is

described by the Euler equation: (Machabeli et al., 2005):

∂pα
∂t

+ (vα∇)pα = −c2γαξ∇ξ +
eα
m

(
E+

1

c
vα ×B

)
, (1)

where ξ ≡
√

1− Ω2R2/c2, R is the coordinate along the straight field lines;

pα, vα, and eα are the momentum (normalized to the particle’s mass), the
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Figure 1: Here we show geometry in which we consider our system of equations. By eϕ, er
and ex unit vectors are denoted, note that ex ⊥ eϕ,x. O is the center of rotation and C - the
curvature center.

velocity and the charge of electrons/positrons, respectively; α = {e±, b} de-

notes the sort of particles and E and B are the electric and the magnetic

field induction respectively. The continuity equation:

∂nα
∂t

+∇(nαvα) = 0, (2)

and the induction equation:

∇×B =
1

c

∂E

∂t
+

4π

c

∑
α=e±,b

Jα, (3)

(where nα and Jα are the density and the current, respectively) complete the

set of equations for n,v,E and B.

In the leading state the plasma is in the frozen-in condition: E0 +
1
cv0α ×

B0 = 0, then, one can show that the solution to the Euler equation in Eq.

(1) for ultra relativistic particle velocities in the leading state is given by
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(Machabeli & Rogava, 1994):

v0θ ≡ v∥ = c cos(Ωt+ φ), (4)

where v∥ is the velocity component along the magnetic field lines and φ is

the initial phase of each particle.

For solving the set of Eqs. (1-3), we will linearize it assuming that, in

the zeroth order of approximation, the flow has the longitudinal velocity

satisfying Eq. (4) and also drifts along the x-axis driven by the curvature of

magnetic field lines (see Fig. 1):

uα =
γα0

v2
∥

ωBα
ρ
, (5)

where uα is the drift velocity; ωBα
= eαB0/mc; and B0 is the background

magnetic induction.

Let us expand the physical quantities up to the first order terms:

Ψ ≈ Ψ0 +Ψ1, (6)

where Ψ ≡ {n,v,p,E,B}. Then if we examine only the x components of

Eqs. (1) and (3), and express the perturbed quantities as follows:

Ψ1(t, r) ∝ Ψ1(t) exp [i (kr)] , (7)

by taking into account that kθ ≪ kx and kr = 0, and bearing in mind that

v1r ≈ cE1
x/B0, one can show that Eqs. (1-3) reduce to the form:

∂p1αx

∂t
− i(kxuα + kθv∥)p

1
αx

=
eα
mc

v∥B
1
r , (8)

∂n1α
∂t

− i(kxuα + kθv∥)n
1
α = ikxn

0
αv

1
αx
, (9)

−ikθcB1
r = 4π

∑
α=e±,b

eα(n
0
αv

1
αx

+ n1αuα). (10)

According to the standard method (see Osmanov et al., 2008), after express-
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ing v1αx
and n1α in the following way:

v1αx
≡ Vαx

eikAα(t), (11)

n1α ≡ Nαe
ikAα(t), (12)

Aαx
(t) =

uα
2Ω

(Ωt+ φ) +
uα
4Ω

sin[2 (Ωt+ φ)], (13)

Aαθ
(t) =

c

Ω
sin(Ωt+ φ), (14)

and substituting them into Eqs. (8,9), one can get the expressions:

v1αx
=

eα
mcγα0

eikAα(t)

∫ t

e−ikAα(t
′)v∥(t

′)Br(t
′)dt′, (15)

n1α =
ieαn

0
αkx

mcγα0

eikAα(t)

∫ t

dt′
∫ t′′

e−ikAα(t
′′)v∥(t

′′)Br(t
′′)dt′′,

(16)

which combined with Eq. (10), lead to the following form:

−ikθcB1
r (t) =

∑
α=e±,b

ω2
α

γα0
c
eikAα(t)

∫ t

e−ikAα(t
′)v∥(t

′)Br(t
′)dt′+

i
∑
α=e±,b

ω2
α

γα0
c
kxuαe

ikAα(t)

∫ t

dt′
∫ t′′

e−ikAα(t
′′)v∥(t

′′)Br(t
′′)dt′′, (17)

where ωα = e
√
4πn0α/m represents the plasma frequency. If we apply the

following identity:

e±ix sin y =
∑
s

Js(x)e
±isy, (18)

to Eq. (17), the latter will simplify to the following form:

Br(ω) = −
∑
α=e±,b

ω2
α

2γα0
kθc

∑
σ=±1

∑
s,n,l,p

Js(gα)Jn(h)Jl(gα)Jp(h)

ω + kxuα
2 + Ω(2s+ n)

×

×Br (ω + Ω(2[s− l] + n− p+ σ))

[
1− kxuα

ω + kxuα
2 + Ω(2s+ n)

]
×

×eiφ(2[s−l]+n−p+σ)+
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+
∑
α=e±,b

ω2
αkxuα

4γα0
kθc

∑
σ,µ=±1

∑
s,n,l,p

Js(gα)Jn(h)Jl(gα)Jp(h)(
ω + kxuα

2 + Ω(2[s+ µ] + n)
)2×

×Br (ω + Ω(2[s− l + µ] + n− p+ σ))× eiφ(2[s−l+µ]+n−p+σ), (19)

where

gα =
kxuα
4Ω

, h =
kθc

Ω

and Js(x) (s = 0;±1;±2 . . .) is the Bessel function of integer order (Abramovitz

& Stegan, 1965).

In order to solve Eq. (19), one has to examine similar equations, rewriting

Eq. (19) (with shifted arguments) for Br(ω ± Ω), Br(ω ± 2Ω), etc.. This

implies that we have to solve the system with the infinite number of equations,

making the problem impossible to handle. Therefore, the only way is to

consider the physics close to the resonance condition, that provides the cutoff

of the infinite row in Eq. (19) and makes the problem solvable (Silin &

Tikhonchuk, 1970).

Studying the resonance state of our physical system (see Eq. (19)), one

can derive the proper frequency for the CDI:

ω0 ≈ −kxuα
2

. (20)

The present condition for physically meaningful case kxuα/2 < 0 implies that

2s+ n = 0 and 2[s+ µ] + n = 0 when ω0 ≪ Ω.

For solving Eq. (19), we examine the average value of Br with respect to

φ. Then, by taking into account the formula:

1

2π

∫
eiNφdφ = δN,0,

and preserving only the leading terms of Eq. (19), after neglecting the con-

tribution from the plasma components, one can derive the dispersion relation

for the instability (see Osmanov et al., 2008):(
ω +

kxub
2

)2

≈ 3ω2
bkxub

2γb0kθc
. (21)
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By expressing the frequency as ω ≡ ω0+iΓ it is easy to estimate the increment

of the CDI:

Γ ≈
(
−3

2

ω2
b

γb0

kxub
kθc

)1/2 ∣∣∣∣J0(kxub4Ω

)
J0

(
kθc

Ω

)∣∣∣∣ . (22)
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